Search results for "computational complexity"

showing 10 items of 249 documents

Reordering Method and Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams

2017

We consider Quantum OBDD model. It is restricted version of read-once Quantum Branching Programs, with respect to “width” complexity. It is known that maximal complexity gap between deterministic and quantum model is exponential. But there are few examples of such functions. We present method (called “reordering”), which allows to build Boolean function g from Boolean Function f, such that if for f we have gap between quantum and deterministic OBDD complexity for natural order of variables, then we have almost the same gap for function g, but for any order. Using it we construct the total function REQ which deterministic OBDD complexity is \(2^{\varOmega (n/log n)}\) and present quantum OBD…

Discrete mathematicsComputational complexity theoryImplicit functionBinary decision diagram010102 general mathematics0102 computer and information sciencesFunction (mathematics)Computer Science::Artificial IntelligenceComputer Science::Computational Complexity01 natural sciencesCombinatorics010201 computation theory & mathematicsComputer Science::Logic in Computer ScienceComplexity class0101 mathematicsBoolean functionQuantum complexity theoryQuantum computerMathematics
researchProduct

If P ≠ NP then Some Strongly Noninvertible Functions Are Invertible

2001

Rabi, Rivest, and Sherman alter the standard notion of noninvertibility to a new notion they call strong noninvertibility, and show--via explicit cryptographic protocols for secret-key agreement ([RS93, RS97] attribute this to Rivest and Sherman) and digital signatures [RS93, RS97]--that strongly noninvertible functions would be very useful components in protocol design. Their definition of strong noninvertibility has a small twist ("respecting the argument given") that is needed to ensure cryptographic usefulness. In this paper, we show that this small twist has a large, unexpected consequence: Unless P = NP, some strongly noninvertible functions are invertible.

Discrete mathematicsComputational complexity theorybusiness.industryP versus NP problemCryptographyCryptographic protocollaw.inventionInvertible matrixDigital signaturelawTwistbusinessTime complexityMathematics
researchProduct

NP-completeness of the hamming salesman problem

1985

It is shown that the traveling salesman problem, where cities are bit strings with Hamming distances, is NP-complete.

Discrete mathematicsComputer Networks and CommunicationsApplied MathematicsComputer Science::Neural and Evolutionary ComputationHamming distanceComputer Science::Computational ComplexityTravelling salesman problemCombinatoricsHigh Energy Physics::TheoryComputational MathematicsCompleteness (order theory)Computer Science::Data Structures and AlgorithmsNP-completeBottleneck traveling salesman problemHamming codeSoftwareComputer Science::Information TheoryMathematicsBIT
researchProduct

Graph connectivity and monadic NP

2002

Ehrenfeucht games are a useful tool in proving that certain properties of finite structures are not expressible by formulas of a certain type. In this paper a new method is introduced that allows the extension of a local winning strategy for Duplicator, one of the two players in Ehrenfeucht games, to a global winning strategy. As an application it is shown that graph connectivity cannot be expressed by existential second-order formulas, where the second-order quantification is restricted to unary relations (monadic NP), even, in the presence of a built-in linear order. As a second application it is stated, that, on the other hand, the presence of a linear order increases the power of monadi…

Discrete mathematicsComputer Science::Computer Science and Game TheoryUnary operationComputational complexity theoryRelation (database)Extension (predicate logic)Type (model theory)CombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Logic in Computer ScienceOrder (group theory)Game theoryComputer Science::Formal Languages and Automata TheoryConnectivityMathematicsProceedings 35th Annual Symposium on Foundations of Computer Science
researchProduct

Dichotomies properties on computational complexity of S-packing coloring problems

2015

This work establishes the complexity class of several instances of the S -packing coloring problem: for a graph G , a positive integer k and a nondecreasing list of integers S = ( s 1 , ? , s k ) , G is S -colorable if its vertices can be partitioned into sets S i , i = 1 , ? , k , where each S i is an s i -packing (a set of vertices at pairwise distance greater than s i ). In particular we prove a dichotomy between NP-complete problems and polynomial-time solvable problems for lists of at most four integers.

Discrete mathematicsDichotomyComputational complexity theory010102 general mathematics0102 computer and information sciences01 natural sciencesGraphTheoretical Computer ScienceCombinatoricsIntegerSet packing010201 computation theory & mathematicsComplexity classDiscrete Mathematics and CombinatoricsPairwise comparison0101 mathematicsColoring problemMathematicsDiscrete Mathematics
researchProduct

Understanding Quantum Algorithms via Query Complexity

2017

Query complexity is a model of computation in which we have to compute a function $f(x_1, \ldots, x_N)$ of variables $x_i$ which can be accessed via queries. The complexity of an algorithm is measured by the number of queries that it makes. Query complexity is widely used for studying quantum algorithms, for two reasons. First, it includes many of the known quantum algorithms (including Grover's quantum search and a key subroutine of Shor's factoring algorithm). Second, one can prove lower bounds on the query complexity, bounding the possible quantum advantage. In the last few years, there have been major advances on several longstanding problems in the query complexity. In this talk, we su…

Discrete mathematicsFOS: Computer and information sciencesQuantum PhysicsComputer scienceModel of computationSubroutineComputer Science::Information RetrievalFOS: Physical sciencesFunction (mathematics)Computational Complexity (cs.CC)Symmetric functionComputer Science - Computational ComplexityBounding overwatchPartial functionKey (cryptography)Quantum algorithmQuantum Physics (quant-ph)Computer Science::Databases
researchProduct

On Physical Problems that are Slightly More Difficult than QMA

2013

We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).

Discrete mathematicsFOS: Computer and information sciencesQuantum PhysicsTheoretical computer scienceCompleteNP-easyFOS: Physical sciences0102 computer and information sciencesComputer Science::Computational ComplexityComputational Complexity (cs.CC)01 natural sciencesPHStructural complexity theoryComputer Science - Computational Complexity010201 computation theory & mathematics0103 physical sciencesAsymptotic computational complexityComplexity classF.1.2Low010306 general physicsQuantum Physics (quant-ph)Quantum complexity theoryMathematics2014 IEEE 29th Conference on Computational Complexity (CCC)
researchProduct

If P≠NP then some strongly noninvertible functions are invertible

2006

AbstractRabi, Rivest, and Sherman alter the standard notion of noninvertibility to a new notion they call strong noninvertibility, and show—via explicit cryptographic protocols for secret-key agreement (Rabi and Sherman attribute this protocol to Rivest and Sherman) and digital signatures (Rabi and Sherman)—that strongly noninvertible functions are very useful components in protocol design. Their definition of strong noninvertibility has a small twist (“respecting the argument given”) that is needed to ensure cryptographic usefulness. In this paper, we show that this small twist has a consequence: unless P=NP, some strongly noninvertible functions are invertible.

Discrete mathematicsGeneral Computer ScienceComputational complexity theorybusiness.industryP versus NP problemOne-way functionsCryptographyOne-way functionCryptographic protocolTheoretical Computer Sciencelaw.inventionComputational complexityInvertible matrixDigital signaturelawAssociativityCryptographyStrong noninvertibilitybusinessAssociative propertyMathematicsTheoretical Computer Science
researchProduct

Nondeterministic Unitary OBDDs

2017

We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically “cheap” functions that are “expensive” for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.

Discrete mathematicsHierarchy (mathematics)Intersection (set theory)010102 general mathematics0102 computer and information sciencesFunction (mathematics)Computer Science::Computational Complexity01 natural sciencesUpper and lower boundsUnitary stateNondeterministic algorithmCombinatoricsNegation010201 computation theory & mathematicsBoolean operations in computer-aided design0101 mathematicsMathematics
researchProduct

Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs

2014

In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …

Discrete mathematicsImplicit functionBinary decision diagram010102 general mathematics02 engineering and technologyFunction (mathematics)Computer Science::Artificial IntelligenceComputer Science::Computational Complexity01 natural sciencesCombinatoricsNondeterministic algorithmComputer Science::Logic in Computer SciencePartial function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsBoolean functionQuantumQuantum computerMathematics
researchProduct