Search results for "computational complexity"
showing 10 items of 249 documents
Symmetry-assisted adversaries for quantum state generation
2011
We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum state generation might be a route to tackle the $backslash$sc Graph Isomorphism problem. We show that for the related problem of $backslash$sc Index Erasure our method leads to a lower bound of $backslash Omega(backslash sqrt N)$ which matches an upper bound obtained via reduction to quantum search on $N$ elements. This closes an open problem first raised by Shi [FOCS'02]. Our approach is …
2014
Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 9 th root of the classical randomized query complexity. This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O’Donnell et al. and Dinur et al., we conjecture that every bounded low-degree polynomial has a “highly influential” …
Any AND-OR Formula of Size N Can Be Evaluated in Time $N^{1/2+o(1)}$ on a Quantum Computer
2007
Consider the problem of evaluating an AND-OR formula on an $N$-bit black-box input. We present a bounded-error quantum algorithm that solves this problem in time $N^{1/2+o(1)}$. In particular, approximately balanced formulas can be evaluated in $O(\sqrt{N})$ queries, which is optimal. The idea of the algorithm is to apply phase estimation to a discrete-time quantum walk on a weighted tree whose spectrum encodes the value of the formula.
Error-Free Affine, Unitary, and Probabilistic OBDDs
2021
We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models.
Lower Bounds and Hierarchies for Quantum Memoryless Communication Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test
2017
We explore multi-round quantum memoryless communication protocols. These are restricted version of multi-round quantum communication protocols. The “memoryless” term means that players forget history from previous rounds, and their behavior is obtained only by input and message from the opposite player. The model is interesting because this allows us to get lower bounds for models like automata, Ordered Binary Decision Diagrams and streaming algorithms. At the same time, we can prove stronger results with this restriction. We present a lower bound for quantum memoryless protocols. Additionally, we show a lower bound for Disjointness function for this model. As an application of communicatio…
Efficient CNF Encoding of Boolean Cardinality Constraints
2003
In this paper, we address the encoding into CNF clauses of Boolean cardinality constraints that arise in many practical applications. The proposed encoding is efficient with respect to unit propagation, which is implemented in almost all complete CNF satisfiability solvers. We prove the practical efficiency of this encoding on some problems arising in discrete tomography that involve many cardinality constraints. This encoding is also used together with a trivial variable elimination in order to re-encode parity learning benchmarks so that a simple Davis and Putnam procedure can solve them.
The monadic quantifier alternation hierarchy over grids and pictures
1998
The subject of this paper is the expressive power of monadic second-order logic over two-dimensional grids. We give a new, self-contained game-theoretical proof of the nonexpressibility results of Matz and Thomas. As we show, this implies the strictness of the monadic second-order quantifier alternation hierarchy over grids.
The Descriptive Complexity Approach to LOGCFL
1999
Building upon the known generalized-quantifier-based firstorder characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's "hardest contextfree language" is LOGCFL-complete under quantifier-free BIT-free interpre…
Online Scheduling of Task Graphs on Heterogeneous Platforms
2020
Modern computing platforms commonly include accelerators. We target the problem of scheduling applications modeled as task graphs on hybrid platforms made of two types of resources, such as CPUs and GPUs. We consider that task graphs are uncovered dynamically, and that the scheduler has information only on the available tasks, i.e., tasks whose predecessors have all been completed. Each task can be processed by either a CPU or a GPU, and the corresponding processing times are known. Our study extends a previous $4\sqrt{m/k}$ 4 m / k -competitive online algorithm by Amaris et al. [1] , where $m$ m is the number of CPUs and $k$ k the number of GPUs ( $m\geq k$ m ≥ k ). We prove that no online…
New Encodings of Pseudo-Boolean Constraints into CNF
2009
International audience; This paper answers affirmatively the open question of the existence of a polynomial size CNF encoding of pseudo-Boolean (PB) constraints such that generalized arc consistency (GAC) is maintained through unit propagation (UP). All previous encodings of PB constraints either did not allow UP to maintain GAC, or were of exponential size in the worst case. This paper presents an encoding that realizes both of the desired properties. From a theoretical point of view, this narrows the gap between the expressive power of clauses and the one of pseudo-Boolean constraints.