Search results for "computations"

showing 10 items of 35 documents

Mathematical properties of nested residues and their application to multi-loop scattering amplitudes

2021

Journal of high energy physics 02(2), 112 (2021). doi:10.1007/JHEP02(2021)112

High Energy Physics - TheoryNuclear and High Energy PhysicscausalityComputationFeynman graphpoleFOS: Physical sciencesDuality (optimization)Mathematical proof01 natural sciences530Theoretical physicsHigh Energy Physics - Phenomenology (hep-ph)NLO Computations0103 physical sciencesddc:530lcsh:Nuclear and particle physics. Atomic energy. Radioactivitystructure010306 general physicsRepresentation (mathematics)Mathematical PhysicsPhysics010308 nuclear & particles physicsscattering amplitudeMathematical Physics (math-ph)QCD PhenomenologysingularityScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Iterated functionlcsh:QC770-798dualityGravitational singularityMathematical structure
researchProduct

Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections

2021

Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …

High Energy Physics - Theorydijet: productionNuclear and High Energy PhysicsParticle physicsNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]splittingFOS: Physical sciencescollinearParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)DGLAP equationHigh Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationNLO Computations0103 physical sciencesRadiative transferEffective field theoryradiative correctionlcsh:Nuclear and particle physics. Atomic energy. Radioactivitypartonheavy ion phenomenology010306 general physicsp nucleus: scatteringPhysicsNLO computationshybrid010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]higher-order: 1Heavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Theory (hep-th)kinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatelcsh:QC770-798
researchProduct

Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs

2014

We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements.

Interface (Java)Computer scienceCollider physics530 PhysicsMonte Carlo methodGeneral Physics and AstronomyFOS: Physical sciences10192 Physics Institute01 natural sciencesComputational scienceMatrix (mathematics)AutomationPhysics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Collider physic0103 physical sciencesStatistical physics010306 general physicsCollider physicsParticle Physics - PhenomenologyMonte Carlo programNLO computationNLO computationsLOOP (programming language)010308 nuclear & particles physics1708 Hardware and ArchitectureMonte Carlo programsLes Houches Accord3100 General Physics and AstronomyHigh Energy Physics - PhenomenologyHardware and Architecture[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Computer Science::Programming Languagesddc:004
researchProduct

A fast 3D dual boundary element method based on hierarchical matrices

2008

AbstractIn this paper a fast solver for three-dimensional BEM and DBEM is developed. The technique is based on the use of hierarchical matrices for the representation of the collocation matrix and uses a preconditioned GMRES for the solution of the algebraic system of equations. The preconditioner is built exploiting the hierarchical arithmetic and taking full advantage of the hierarchical format. Special algorithms are developed to deal with crack problems within the context of DBEM. The structure of DBEM matrices has been efficiently exploited and it has been demonstrated that, since the cracks form only small parts of the whole structure, the use of hierarchical matrices can be particula…

Mathematical optimizationHierarchical matricesCollocationPreconditionerDual boundary element methodApplied MathematicsMechanical EngineeringMathematicsofComputing_NUMERICALANALYSISContext (language use)SolverCondensed Matter PhysicsSystem of linear equationsLarge scale computationsGeneralized minimal residual methodMatrix (mathematics)Materials Science(all)Mechanics of MaterialsModelling and SimulationModeling and SimulationFast solversGeneral Materials ScienceSettore ING-IND/04 - Costruzioni E Strutture AerospazialiAlgorithmBoundary element methodMathematicsInternational Journal of Solids and Structures
researchProduct

A Meshfree Boundary Method for M/EEG Forward Computations

2014

Meshfree methodSettore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaM/EEG Forward Computations
researchProduct

Scalar particle contribution to Higgs production via gluon fusion at NLO

2007

22 pages, 5 figures.-- ISI Article Identifier: 000252243700095.-- ArXiv pre-print available at: http://arxiv.org/abs/0709.4227

Nuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeScalar (mathematics)Adjoint representationFOS: Physical sciencesProton-proton collisionsHiggs sectorHigh Energy Physics - Phenomenology (hep-ph)Supersymmetric spectraBoson productionNLO ComputationsHadronic CollidersPhysicsQuantum chromodynamicsGluinoLogarithmic correctionsHigh Energy Physics::PhenomenologyScalar bosonGluonHigh Energy Physics - PhenomenologyQCD correctionsSupersymmetry Phenomenology2-loop Electroweak correctionsHiggs bosonHigh Energy Physics::ExperimentHadron-hadron collisionsJournal of High Energy Physics
researchProduct

Exclusive heavy vector meson electroproduction to NLO in collinear factorisation

2021

We compute the exclusive electroproduction, $\gamma^* p \rightarrow V p$, of heavy quarkonia $V$ to NLO in the collinear factorisation scheme, which has been formally proven for this process. The inclusion of an off-shell virtuality $Q^2$ carried by the photon extends the photoproduction phase space of the exclusive heavy quarkonia observable to electroproduction kinematics. This process is relevant for diffractive scattering at HERA and the upcoming EIC, as well as at the proposed LHeC and FCC.

Nuclear and High Energy PhysicsParticle physicsPhotonNuclear TheoryFOS: Physical sciencesQC770-798hiukkasfysiikka01 natural sciences114 Physical sciencesHigh Energy Physics - Phenomenology (hep-ph)FactorizationNuclear and particle physics. Atomic energy. RadioactivityNLO Computations0103 physical sciencesVector mesonNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyObservableHERAQCD PhenomenologyHigh Energy Physics - PhenomenologyPhase spaceHigh Energy Physics::Experiment
researchProduct

Zemach moments and radii of H2,3 and He3,4

2019

We present benchmark calculations of Zemach moments and radii of $^{2,3}\mathrm{H}$ and $^{3,4}\mathrm{He}$ using various few-body methods. Zemach moments are required to interpret muonic atom data measured by the CREMA collaboration at the Paul Scherrer Institute. Conversely, radii extracted from spectroscopic measurements can be compared with ab initio computations, posing stringent constraints on the nuclear model. For a given few-body method, different numerical procedures can be applied to compute these quantities. A detailed analysis of the numerical uncertainties entering the total theoretical error is presented. Uncertainties from the few-body method and the calculational procedure …

Nuclear physicsPhysicsDynamical modeling010308 nuclear & particles physics0103 physical sciencesAb initio computationsFew-body systems010306 general physicsNucleon01 natural sciences7. Clean energyNuclear theoryExotic atomPhysical Review C
researchProduct

Ultrafast electron transfer in photosynthesis: reduced pheophytin and quinone interaction mediated by conical intersections.

2006

The mechanism of electron transfer (ET) from reduced pheophytin (Pheo(-)) to the primary stable photosynthetic acceptor, a quinone (Q) molecule, is addressed by using high-level ab initio computations and realistic molecular models. The results reveal that the ET process involving the (Pheo(-) + Q) and (Pheo + Q(-)) oxidation states can be essentially seen as an ultrafast radiationless transition between the two hypersurfaces taking place via conical intersections (CIs). According to the present findings, an efficient ultrafast ET implies that the Pheo- and Q move toward each other in a given preferential parallel orientation, reaching the most effective arrangement for ET at intermolecular…

PheophytinPhotosynthesisPhotochemistryAcceptorSurfaces Coatings and FilmsQuinonechemistry.chemical_compoundElectron transferchemistryMaterials ChemistryMoleculeAb initio computationsPhysical and Theoretical ChemistryUltrashort pulseThe journal of physical chemistry. B
researchProduct

Tree-Loop Duality Relation beyond simple poles

2013

We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsPure mathematics010308 nuclear & particles physicsGeneralizationPropagatorDuality (optimization)FísicaFOS: Physical sciencesExtension (predicate logic)QCD Phenomenology01 natural sciencesDuality relationLoop (topology)Theoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)NLO Computations0103 physical sciencesIntegration by partsddc:530Tree (set theory)010306 general physics
researchProduct