Search results for "computer science"

showing 10 items of 22367 documents

On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0

2021

Abstract. The work discusses the diffusional growth in particulate systems such as atmospheric clouds. It focuses on the Eulerian modeling approach in which the evolution of the probability density function describing the particle size spectrum is carried out using a fixed-bin discretization. The numerical diffusion problem inherent to the employment of the fixed-bin discretization is scrutinized. The work focuses on the applications of MPDATA family of numerical schemes. Several MPDATA variants are explored including: infinite-gauge, non-oscillatory, third-order-terms and recursive antidiffusive correction (double pass donor cell, DPDC) options. Methodology for handling coordinate transfor…

010504 meteorology & atmospheric sciencesDiscretizationComputer scienceEulerian pathProbability density functionNumerical diffusion01 natural sciences010305 fluids & plasmassymbols.namesakeTemporal resolution0103 physical sciencesConvergence (routing)symbolsApplied mathematicsSpurious relationship0105 earth and related environmental sciencesDoppler broadening
researchProduct

Understanding deep learning in land use classification based on Sentinel-2 time series

2020

AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …

010504 meteorology & atmospheric sciencesEnvironmental economicsComputer scienceProcess (engineering)0211 other engineering and technologieslcsh:MedicineClimate changeContext (language use)02 engineering and technology01 natural sciencesArticleRelevance (information retrieval)lcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilityMultidisciplinaryLand useContextual image classificationbusiness.industryDeep learninglcsh:RClimate-change policy15. Life on landComputer scienceData scienceEnvironmental sciencesEnvironmental social sciences13. Climate actionlcsh:QAnomaly detectionArtificial intelligencebusinessCommon Agricultural PolicyAgroecologyScientific Reports
researchProduct

Transferring deep learning models for cloud detection between Landsat-8 and Proba-V

2020

Abstract Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical proper…

010504 meteorology & atmospheric sciencesExploitComputer sciencebusiness.industryDeep learning0211 other engineering and technologiesCloud detectionCloud computing02 engineering and technologyEarth observation satellitecomputer.software_genre01 natural sciencesConvolutional neural networkAtomic and Molecular Physics and OpticsComputer Science ApplicationsSatelliteData miningArtificial intelligenceComputers in Earth SciencesbusinessTransfer of learningEngineering (miscellaneous)computer021101 geological & geomatics engineering0105 earth and related environmental sciencesISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis

2015

In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to p…

010504 meteorology & atmospheric sciencesFeature extraction0211 other engineering and technologiesRelative spectral alignment02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesCross-sensorCanonical correlation analysis1706 Computer Science Applications910 Geography & travelComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsGround truthbusiness.industry1903 Computers in Earth SciencesKernel methodsPattern recognitionReal imageAtomic and Molecular Physics and OpticsComputer Science Applications10122 Institute of GeographyTransformation (function)Kernel methodChange detectionFeature extraction2201 Engineering (miscellaneous)Artificial intelligencebusinessCanonical correlationChange detectionCurse of dimensionalityISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

High spatio- temporal resolution land surface temperature mission - a copernicus candidate mission in support of agricultural monitoring

2018

International audience; Evolution in the Copernicus Space Component (CSC) is foreseen in the mid-2020s to meet priority Copernicus user needs not addressed by the existing infrastructure, and/or to reinforce services by monitoring capability in the thematic domains of CO 2 , polar, and agriculture/forestry. This evolution will be synergetic with the enhanced continuity of services for the next generation of CSC. The “High Spatio-Temporal Resolution Land Surface Temperature Monitoring (LSTM) Mission”, identified as one of the CSC Expansion High Priority Candidate Missions (HPCM), currently undergoes an ESA preparatory phase (phase A/B1) study to establish mission feasibility. The LSTM missio…

010504 meteorology & atmospheric sciencesLand surface temperatureComputer sciencebusiness.industry[SDV]Life Sciences [q-bio]0208 environmental biotechnology02 engineering and technology01 natural sciences020801 environmental engineeringWater resourcesThematic map13. Climate actionAgricultureComponent (UML)Temporal resolution[SDE]Environmental SciencesSystems engineeringbusiness0105 earth and related environmental sciencesCopernicus
researchProduct

Hyperspectral dimensionality reduction for biophysical variable statistical retrieval

2017

Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologies02 engineering and technologycomputer.software_genre01 natural sciencessymbols.namesakeLinear regressionComputers in Earth SciencesEngineering (miscellaneous)Gaussian processHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesData stream miningbusiness.industryDimensionality reductionHyperspectral imagingPattern recognitionAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel (statistics)symbolsData miningArtificial intelligencebusinesscomputerISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data

2020

Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesAtmospheric correctionFOS: Physical sciences02 engineering and technology15. Life on land01 natural sciencesAtomic and Molecular Physics and OpticsArticleComputer Science ApplicationsPhysics - Atmospheric and Oceanic PhysicsAtmospheric radiative transfer codesKrigingAtmospheric and Oceanic Physics (physics.ao-ph)RadianceSatelliteComputers in Earth SciencesLeaf area indexScale (map)Engineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

2020

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesImage processing02 engineering and technologycomputer.software_genre01 natural scienceslcsh:AgricultureKrigingTime series021101 geological & geomatics engineering0105 earth and related environmental sciences2. Zero hungerHyperparameterPixelSeries (mathematics)lcsh:SGaussian processes regressionSatellite Image Time SeriesData miningtime seriesSentinel-2optimizationAgronomy and Crop Sciencecomputercrop monitoringphenology indicatorsAgronomy
researchProduct

Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy

2018

Abstract The S-NPP VIIRS Land Surface Temperature (LST) product attained the stage V1 of validation maturity (provisional validated) at the end of 2014. This paper evaluates the current VIIRS V1 LST product versus concurrent ground data acquired at a rice paddy site from December 2014 to August 2016. The experimental site has three different seasonal and homogeneous land covers through the year, which makes the site interesting for validation activities. An autonomous and multiangular system was used to record continuous ground data at the site. The data acquired at zenith angles similar to the VIIRS viewing angles were used for the validation to avoid possible differences between satellite…

010504 meteorology & atmospheric sciencesPixelMeteorologymedia_common.quotation_subject0211 other engineering and technologies02 engineering and technologyLand cover01 natural sciencesAtomic and Molecular Physics and OpticsComputer Science ApplicationsSkyEmissivityRange (statistics)Environmental scienceSatelliteStage (hydrology)Computers in Earth SciencesEngineering (miscellaneous)Zenith021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingmedia_commonISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review

2020

Abstract Green fractional vegetation cover ( f c ) is an important phenotypic factor in the fields of agriculture, forestry, and ecology. Spatially explicit monitoring of f c via relative vegetation abundance (RA) algorithms, especially those based on scaled maximum/minimum vegetation index (VI) values, has been widely investigated in remote sensing research. Although many studies have explored the effectiveness of RA algorithms over the past 30 years, a literature review summarizing the corresponding theoretical background, issues, current state-of-the-art techniques, challenges, and prospects has not yet been published. The overall objective of the present study was to accomplish a compre…

010504 meteorology & atmospheric sciencesResilient Livelihoods0211 other engineering and technologies02 engineering and technologyForests01 natural sciencesNormalized Difference Vegetation IndexArticleVegetation coverAbundance (ecology)Computers in Earth SciencesAdaptationEngineering (miscellaneous)Image resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingMathematicsEstimationVegetationBiodiversity15. Life on landAtomic and Molecular Physics and OpticsComputer Science ApplicationsRemote sensing (archaeology)Vegetation IndexAlgorithm
researchProduct