Search results for "computer science"
showing 10 items of 22367 documents
Assessing optimal water quality monitoring network in road construction using integrated information-theoretic techniques
2020
Author´s accepted manuscript. The environmental impacts of road construction on the aquatic environment necessitate the monitoring of receiving water quality. The main contribution of the paper is developing a feasible methodology for spatial optimization of the water quality monitoring network (WQMN) in surface water during road construction using the field data. First, using the Canadian Council of Ministers of the Environment (CCME) method, the water quality index (WQI) was computed in each potential monitoring station during construction. Then, the integrated form of the information-theoretic techniques consists of the transinformation entropy (TE), and the value of information (VOI) we…
Modelling Complex Volume Shape Using Ellipsoid: Application to Pore Space Representation
2017
Natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In this study we consider the representation of the porous media. Thanks to the technological advances in Computed Topography scanners, the acquisition of images of complex shapes becomes possible. However, and unfortunately, the image data is not directly usable for simulation purposes. In this paper, we investigate the modeling of such shapes using a piece wise approximation of image data by ellipsoids. We propose to use a split-merge strategy and a…
Innovative technical implementation of the Schumann resonances and its influence on organisms and biological cells
2019
Over the course of time in the digital age, oscillating processes were utilized in various realizations. Life without these became hardly imaginable. Schumann resonances are electromagnetical resonances or eigenfrequencies (radio waves), which originate from the oscillation in a hollow space shell. Their average basic frequency is 7,83Hz. The above-mentioned radio waves emerge from energy discharges such as thunderstorms, lightning or solar wind within the earth's surface and the ionosphere. They exist around the globe. Various scientists have discovered a correlation to our health on the basis of studies and experiments; their absence can result in a variety of disorders from headaches to …
FLEX/S3 Tandem Mission Performance Assessment: Evolution of the End-to-End Simulator Flex-E
2018
An End-to-end simulator (E2ES) is a tool to evaluate the performance of a satellite mission. Once a mission is approved for operation, E2ES evolves during Phase C/D to become a supporting tool for the development and validation of the ground data processor, as well as for simulating data sets to test the Prototype and Operational Processors. FLEX-E is the E2ES of the FLEX/Sentinel-3 tandem mission, which was selected in 2015 as ESA's eighth Earth Explorer. The FLEX-E evolution implies the consolidation of all the retrieval algorithms (e.g. fluorescence, reflectance, biophysical variables), the implementation of new scientific developments, as well the improvement of the co-registration proc…
Towards LST split-window algorithm FPGA implementation for CubeSats on-board computations purposes
2019
ABSTRACTNano, pico, and the so-called CubeSat satellites are taking place due to the emergent improvements in both high-performance nano and pico electronics and computational technologies. More th...
Predicting year of plantation with hyperspectral and lidar data
2017
This paper introduces a methodology for predicting the year of plantation (YOP) from remote sensing data. The application has important implications in forestry management and inventorying. We exploit hyperspectral and LiDAR data in combination with state-of-the-art machine learning classifiers. In particular, we present a complete processing chain to extract spectral, textural and morphological features from both sensory data. Features are then combined and fed a Gaussian Process Classifier (GPC) trained to predict YOP in a forest area in North Carolina (US). The GPC algorithm provides accurate YOP estimates, reports spatially explicit maps and associated confidence maps, and provides sens…
First in-situ measurements of plume chemistry at mount garet volcano, island of gaua (Vanuatu)
2020
Recent volcanic gas compilations have urged the need to expand in-situ plume measurements to poorly studied, remote volcanic regions. Despite being recognized as one of the main volcanic epicenters on the planet, the Vanuatu arc remains poorly characterized for its subaerial emissions and their chemical imprints. Here, we report on the first plume chemistry data for Mount Garet, on the island of Gaua, one of the few persistent volatile emitters along the Vanuatu arc. Data were collected with a multi-component gas analyzer system (multi-GAS) during a field campaign in December 2018. The average volcanic gas chemistry is characterized by mean molar CO2/SO2, H2O/SO2, H2S/SO2 and H2/SO2 ratios …
A Geometry-Based Underwater Acoustic Channel Model Allowing for Sloped Ocean Bottom Conditions
2017
This paper proposes a new geometry-based channel model for shallow-water ocean environments, in which the ocean bottom can slope gently down/up. The need for developing such an underwater acoustic (UWA) channel model is driven by the fact that the standard assumption of a flat ocean bottom does not hold in many realistic scenarios. Starting from a geometrical model, we develop a stochastic channel model for wideband single-input single-output vehicle-to-vehicle UWA channels using the ray theory assuming smooth ocean surface and bottom. We investigate the effect of the ocean-bottom slope angle on the distribution of the channel envelope, instantaneous channel capacity, temporal autocorrelati…
A Nonisovelocity Geometry-Based Underwater Acoustic Channel Model
2018
This paper proposes a new geometry-based shallow underwater acoustic (UWA) channel model allowing for nonisovelocity ocean conditions. The fact that the isovelocity assumption does not hold in many real-world scenarios motivates the need for developing channel models for nonisovelocity UWA propagation environments. Starting from a geometrical model, we develop a stochastic channel model for a single-input single-output (SISO) vehicle-to-vehicle UWA channel assuming that the ocean surface and bottom are rough and that the speed of sound varies with depth. The effect of the nonisovelocity condition has been assessed regarding its influence on the temporal autocorrelation function, the frequen…
Performance analysis of Alamouti-coded OFDM systems over spatio-temporally correlated underwater acoustic channels
2017
In this paper, we analyze the performance of Alamouti-coded orthogonal frequency division multiplexing (OFDM) systems over time-varying underwater acoustic (UWA) channels. A realistic UWA channel model has been considered, which can be correlated in either time or space or simultaneously in both domains. An exact analytical expression for the bit error probability (BEP) is necessary to analyze accurately the performance of Alamouti-coded OFDM systems over the spatio-temporally correlated UWA channel model. Hence, by using this UWA channel model, an expression has been derived for the BEP of Alamouti-coded OFDM systems assuming that the receiver knows perfectly the channel state information.…