Search results for "convection"

showing 10 items of 332 documents

Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment

2021

AbstractThis study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several c…

Convection[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceBuoyancy010504 meteorology & atmospheric sciencesPerturbation (astronomy)engineering.materialAtmospheric sciences01 natural sciences010305 fluids & plasmasTroposphere13. Climate action0103 physical sciencesConvective cloudengineeringCloud condensation nucleiEnvironmental scienceIntensity (heat transfer)Pressure gradient0105 earth and related environmental sciences
researchProduct

FINITE ELEMENT RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS WITH INTERIOR AND BOUNDARY LAYERS

1996

We present a new algorithm for the resolution of both interior and boundary layers present in the convection-diffusion equation in laminar regimes, based on the formulation of a family of polynomial-exponential elements. We have carried out an adaptation of the standard variational methods (finite element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial-exponential elements. The latter are able to represent the high gradients of the solution, while the standard elements represent the solution in the areas of smooth variation.

PolynomialApplied MathematicsMechanical EngineeringMathematical analysisSpectral element methodComputational MechanicsBoundary (topology)Laminar flowFinite element methodComputer Science ApplicationsMechanics of MaterialsMesh generationConvection–diffusion equationExtended finite element methodMathematicsInternational Journal for Numerical Methods in Fluids
researchProduct

Small-scale mixing processes enhancing troposphere-to-stratosphere transport by pyro-cumulonimbus storms

2007

Abstract. Deep convection induced by large forest fires is an efficient mechanism for transport of aerosol particles and trace gases into the upper troposphere and lower stratosphere (UT/LS). For many pyro-cumulonimbus clouds (pyroCbs) as well as other cases of severe convection without fire forcing, radiometric observations of cloud tops in the thermal infrared (IR) reveal characteristic structures, featuring a region of relatively high brightness temperatures (warm center) surrounded by a U-shaped region of low brightness temperatures. We performed a numerical simulation of a specific case study of pyroCb using a non-hydrostatic cloud resolving model with a two-moment cloud microphysics p…

ConvectionTropospherePhysicsAtmospheric ScienceBrightnessMeteorologyThermalGravity waveAtmospheric sciencesStratosphereTrace gasAerosolAtmospheric Chemistry and Physics
researchProduct

Viscous dissipation and thermoconvective instabilities in a horizontal porous channel heated from below

2010

Accepted version of av article from the journal: International Journal of Thermal Sciences. Published version available on Science Direct: http://dx.doi.org/10.1016/j.ijthermalsci.2009.10.010 A linear stability analysis of the basic uniform flow in a horizontal porous channel with a rectangular cross section is carried out. The thermal boundary conditions at the impermeable channel walls are: uniform incoming heat flux at the bottom wall, uniform temperature at the top wall, adiabatic lateral walls. Thermoconvective instabilities are caused by the incoming heat flux at the bottom wall and by the internal viscous heating. Linear stability against transverse or longitudinal roll disturbances …

ConvectionVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413Darcy's lawMaterials scienceLINEAR STABILITYGeneral EngineeringThermodynamicsMechanicsCondensed Matter PhysicsInstabilityVISCOUS DISSIPATIONPhysics::Fluid DynamicsHeat fluxPOROUS MEDIUMCONVECTIVE ROLLSHeat transferPotential flowVDP::Technology: 500::Materials science and engineering: 520Adiabatic processDARCY'S LAWLinear stability
researchProduct

Numerical Study of Forced MHD Convection Flow and Temperature Around Periodically Placed Cylinders

2016

In this paper we consider 2D stationary boundary value problems for the system of magnetohydrodynamic (MHD) equations and the heat transfer equation. The viscous electrically conducting incompressible liquid moves between infinite cylinders with square or round sections placed periodically. We also consider similar 2D MHD channel flow with periodically placed obstacles on the channel walls. We analyse the 2D forced and free MHD convection flow and temperature around cylinders and obstacles in homogeneous external magnetic field. The cylinders, obstacles and walls of the channel with constant temperature are heated. The distributions of electromagnetic fields, forces, velocity and temperatur…

Physics::Fluid DynamicsElectromagnetic fieldPhysicsCombined forced and natural convectionHeat transferFinite differenceBoundary value problemMagnetohydrodynamic driveMechanicsMagnetohydrodynamicsOpen-channel flow
researchProduct

Breakdown of Burton-Prime-Slichter approach and lateral solute segregation in radially converging flows

2005

A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of fi…

Convectionbusiness.industryChemistryLogarithmic growthFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsRadiusMechanicsCondensed Matter PhysicsBoundary layer thicknessSymmetry (physics)Inorganic ChemistryBoundary layerOpticsMaterials ChemistryDiffusion (business)businessMelt flow index
researchProduct

Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations

2021

Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is…

010504 meteorology & atmospheric sciencesdimension: 3neutron star: magnetic fieldtorusAstrophysicsMagnetar01 natural sciencesrotationstarstrong fieldMagnetarsAstrophysics::Solar and Stellar Astrophysicsgravitational radiation: spectrumgravitational radiation: signatureSupernova core collapse010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMethods numerical[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]formationscalingSupernovaAmplitudeAstrophysics - Solar and Stellar AstrophysicsConvection zoneAstrophysics - High Energy Astrophysical PhenomenaDynamosupernova: collapseprotoneutron starFOS: Physical sciencesConvectionsymmetry: axialGravitational waves0103 physical sciencesstructurenumerical calculationsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGravitational waveAstronomy and AstrophysicsmagnetarNeutron star13. Climate actionSpace and Planetary Scienceefficiencygravitational radiation: emissionMagnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
researchProduct

EXPERIMENTAL VALIDATION OF A FINITE DIFFERENCES TROMBE WALL MODEL

1983

ABSTRACT The paper describes a finite differences Trombe wall model validation, based on experimental data recorded at a passive systems test station in Central Italy. The computer code has been checked step by step, due to the different reliability of the data and to the various algorithms used in the code. Thus, cloudy and clear nights with no thermocirculation were simulated and compared with experimental data, then evening hours with thermocirculation, but no sun and, finally, a full day was simulated and compared. Some inaccuracy has been found in the simulation of wind effect on outer glass convective heat transfer coefficient. The code, however, has been found to provide data in reas…

ConvectionEngineeringSource codebusiness.industrymedia_common.quotation_subjectFinite differenceExperimental dataHeat transfer coefficientMechanicsCode (cryptography)Trombe wallbusinessSimulationReliability (statistics)media_common
researchProduct

Heat and mass transfer phenomena in magnetic fluids

2007

In this article the influence of a magnetic field on heat and mass transport phenomena in magnetic fluids (ferrofluids) will be discussed. The first section is dealing with a magnetically driven convection, the so called thermomagnetic convection while in the second section the influence of a temperature gradient on the mass transport, the Soret effect in ferrofluids, is reviewed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

ConvectionMass transportFerrofluidMaterials scienceCondensed matter physicsApplied MathematicsGeneral Physics and AstronomyThermomagnetic convectionThermophoresisMagnetic fieldPhysics::Fluid DynamicsTemperature gradientMass transferGeneral Materials ScienceNonlinear Sciences::Pattern Formation and SolitonsGAMM-Mitteilungen
researchProduct

Heat and mass transfer phenomena

2002

This section deals with main problems of the heat and mass transfer in magnetic colloids. The analysis is mainly based on the general model given in the Chapter written by R. E. Rosensweig. Hydrodynamic and thermal problems are simplified considering incompressible liquids and neglecting the effects of polarization and electric conductivity as well as ignoring some other secondary effects that usually can be neglected in ferrofluid experiments. Contrarily, the analysis of mass transfer accounts for new sedimentation phenomena and cross effects of interrelated heat and mass transfer. Since the description given by Rosensweig is of general theoretical nature, while the present work mainly foc…

PhysicsConvectionFerrofluidConvective heat transferMass transferCompressibilityThermodynamicsThermomagnetic convectionRayleigh numberMechanicsCondensed Matter PhysicsThermal conductionElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct