Search results for "convex"
showing 10 items of 389 documents
Convex semi-infinite games
1986
This paper introduces a generalization of semi-infinite games. The pure strategies for player I involve choosing one function from an infinite family of convex functions, while the set of mixed strategies for player II is a closed convex setC inRn. The minimax theorem applies under a condition which limits the directions of recession ofC. Player II always has optimal strategies. These are shown to exist for player I also if a certain infinite system verifies the property of Farkas-Minkowski. The paper also studies certain conditions that guarantee the finiteness of the value of the game and the existence of optimal pure strategies for player I.
An overview of semi-infinite programming theory and related topics through a generalization of the alternative theorems
1984
We propose new alternative theorems for convex infinite systems which constitute the generalization of the corresponding toGale, Farkas, Gordan andMotzkin. By means of these powerful results we establish new approaches to the Theory of Infinite Linear Inequality Systems, Perfect Duality, Semi-infinite Games and Optimality Theory for non-differentiable convex Semi-Infinite Programming Problem.
Notice of Violation of IEEE Publication Principles: Robust Delay-Dependent $H_{\infty}$ Control of Uncertain Time-Delay Systems With Mixed Neutral, D…
2011
The problem of robust mode-dependent delayed state feedback H∞ control is investigated for a class of uncertain time-delay systems with Markovian switching parameters and mixed discrete, neutral, and distributed delays. Based on the Lyapunov-Krasovskii functional theory, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities for the stochastic stability and stabilization of the considered system using some free matrices. The desired control is derived based on a convex optimization method such that the resulting closed-loop system is stochastically stable and satisfies a prescribed level of H∞ performance, simultaneously. Finally, two numer…
On Słowikowski, Raíkov and De Wilde Closed Graph Theorems
1986
Publisher Summary This chapter focuses on the Slowikowski, Raikov and De Wilde closed graph theorems. The vector spaces used in the chapter, are defined over the field Ղ of real or complex numbers. The term, “space” means separated topological vector space, unless the contrary is specifically stated. If Ω is a non-empty open subset of the n -dimensional euclidean space, then the Schwartz space ҟ′(Ω) endowed with the strong topology belongs to this class. The chapter also studies the classes of spaces related with this conjecture. The class of Slowikowski spaces contains the F-spaces and it is stable with respect to the operations that include: countable topological direct sums, closed subsp…
Clarkson-McCarthy inequalities with unitary and isometry orbits
2020
Abstract A refinement of a trace inequality of McCarthy establishing the uniform convexity of the Schatten p-classes for p > 2 is proved: if A , B are two n-by-n matrices, then there exists some pair of n-by-n unitary matrices U , V such that U | A + B 2 | p U ⁎ + V | A − B 2 | p V ⁎ ≤ | A | p + | B | p 2 . A similar statement holds for compact Hilbert space operators. Another improvement of McCarthy's inequality is given via the new operator parallelogramm law, | A + B | 2 ⊕ | A − B | 2 = U 0 ( | A | 2 + | B | 2 ) U 0 ⁎ + V 0 ( | A | 2 + | B | 2 ) V 0 ⁎ for some pair of 2n-by-n isometry matrices U 0 , V 0 .
Apunts de teoria de Matemàtiques II (curs 2015-2016)
2016
El document forma part dels materials docents programats mitjançant l'ajut del Servei de Política Lingüística de la Universitat de Valencia en l'any 2011, encara que està actualitzat. Apunts de teoria de programació lineal, no lineal i lineal entera amb especial aplicación a l'Economia i el món de l'empresa. Contents about linear programming, non-linear programming and integer linear programming with economic and management applications
Menger curvature and Lipschitz parametrizations in metric spaces
2005
Diameter 2 properties and convexity
2015
We present an equivalent midpoint locally uniformly rotund (MLUR) renorming $X$ of $C[0,1]$ on which every weakly compact projection $P$ satisfies the equation $\|I-P\| = 1+\|P\|$ ($I$ is the identity operator on $X$). As a consequence we obtain an MLUR space $X$ with the properties D2P, that every non-empty relatively weakly open subset of its unit ball $B_X$ has diameter 2, and the LD2P+, that for every slice of $B_X$ and every norm 1 element $x$ inside the slice there is another element $y$ inside the slice of distance as close to 2 from $x$ as desired. An example of an MLUR space with the D2P, the LD2P+, and with convex combinations of slices of arbitrary small diameter is also given.
Geometric mean and triangles inscribed in a semicircle in Banach spaces
2008
AbstractWe consider the triangles with vertices x, −x and y where x,y are points on the unit sphere of a normed space. Using the geometric means of the variable lengths of the sides of these triangles, we define two geometric constants for Banach spaces. These constants are closely related to the modulus of convexity of the space under consideration, and they seem to represent a useful tool to estimate the exact values of the James and Jordan–von Neumann constants of some Banach spaces.
Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere
2013
Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.