Search results for "convexity"

showing 10 items of 57 documents

MR2580162 (2011b:46030) Martinón, Antonio A note on measures of nonconvexity. Nonlinear Anal. 72 (2010), no. 6, 3108–3111. (Reviewer: Diana Caponetti…

2010

Eisenfeld and Lakshmikantham [Yokohama Math. J. 24 (1976), no.1-2, 133-140; MR0425704 (54$\#$13657)] defined the measure of nonconvexity $\alpha(C)$ of a subset $C$ of a Banach space $X$ to be the Hausdorff distance $h(C, {\rm conv} C)$ between the set $C$ and its convex hull. In this note the author, for a nonempty bounded subset $C$ of $X$, defines a measure of nonconvexity $\beta(C)$ as the Hausdorff distance of $C$ to the family $bx(X)$ of all nonempty bounded convex subsets of $X$, i.e. $ \beta(C)= \inf_{K \in bx(X)}h(C,K ). $ The author studies the properties of $\beta$. He shows that $\alpha$ and $ \beta$ are equivalent, but not equal in the general case.

Measure of nonconvexity
researchProduct

Improving the stability bound for the PPH nonlinear subdivision scheme for data coming from strictly convex functions

2021

Abstract Subdivision schemes are widely used in the generation of curves and surfaces, and therefore they are applied in a variety of interesting applications from geological reconstructions of unaccessible regions to cartoon film productions or car and ship manufacturing. In most cases dealing with a convexity preserving subdivision scheme is needed to accurately reproduce the required surfaces. Stability respect to the initial input data is also crucial in applications. The so called PPH nonlinear subdivision scheme is proven to be both convexity preserving and stable. The tighter the stability bound the better controlled is the final output error. In this article a more accurate stabilit…

Nonlinear subdivision0209 industrial biotechnologybusiness.industryComputer scienceApplied MathematicsStability (learning theory)020206 networking & telecommunications02 engineering and technologyConvexityComputational MathematicsNonlinear system020901 industrial engineering & automationScheme (mathematics)0202 electrical engineering electronic engineering information engineeringApplied mathematicsVariety (universal algebra)businessConvex functionComputingMethodologies_COMPUTERGRAPHICSSubdivisionApplied Mathematics and Computation
researchProduct

Caliper navigation for craniotomy planning of convexity targets.

2021

Introduction A technique to localize a radiological target on the head convexity fast and with acceptable precision is sufficient for surgeries of superficial intracranial lesions, and of help in the setting of emergency surgery, computer navigation breakdown, limited resources and education. We present a caliper technique based on fundamental geometry, with inexpensive and globally available tools (conventional CT or MRI image viewer, calculator, caliper). Methods The distances of the radiological target from two landmarks (nasion and porus acusticus externus) are assessed with an image viewer and Pythagoras’ theorem. The two distances are then marked around the landmarks onto the head of…

Offset (computer science)Computer sciencemedicine.medical_treatmentDistance MeasurementConvexityDiagnostic RadiologyNervous System ProceduresMedicine and Health SciencesComputer navigationMusculoskeletal SystemCraniotomyMeasurementMultidisciplinaryRadiology and ImagingQRBrainMagnetic Resonance ImagingNavigationmedicine.anatomical_structureSurgery Computer-AssistedMedicineEngineering and TechnologyNasionAnatomyCraniotomyResearch ArticleImaging TechniquesScienceSurgical and Invasive Medical ProceduresResearch and Analysis MethodsImaging Three-DimensionalSigns and SymptomsDiagnostic MedicinemedicineHumansRC346-429NeuronavigationSkeletonScalpbusiness.industrySkullBiology and Life SciencesLesionsIntracranial lesionsCalipersNeurology. Diseases of the nervous systemClinical MedicineNuclear medicinebusinessTomography X-Ray ComputedLimited resourcesHeadPloS one
researchProduct

On the convexity of Relativistic Hydrodynamics

2013

The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\it Rev. Mod. Phys.} {\bf 61} 75). The classical limit is recovered.

PhysicsPhysics and Astronomy (miscellaneous)Equation of state (cosmology)Regular polygonFOS: Physical sciencesPerfect fluidDerivativeGeneral Relativity and Quantum Cosmology (gr-qc)System of linear equationsGeneral Relativity and Quantum CosmologyRelativistic hydrodynamic systemConvexityClassical limitConvexityAstronomía y AstrofísicaMathematical physics
researchProduct

On the convexity of relativistic ideal magnetohydrodynamics

2015

We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity con…

Physics[PHYS]Physics [physics]Special relativityPhysics and Astronomy (miscellaneous)Equation of state (cosmology)Degenerate energy levelsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Special relativityGeneral Relativity and Quantum CosmologyConvexityMagnetic field83A05 76W05 35L60 35L65Nonlinear systemConvexityMagnetohydrodynamicsFlow (mathematics)Magnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ComputingMilieux_MISCELLANEOUSMathematical physicsAstronomía y Astrofísica
researchProduct

Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions

2019

Let $\Omega \subset \mathbb{R}^n$ be a convex domain and let $f:\Omega \rightarrow \mathbb{R}$ be a positive, subharmonic function (i.e. $\Delta f \geq 0$). Then $$ \frac{1}{|\Omega|} \int_{\Omega}{f dx} \leq \frac{c_n}{ |\partial \Omega| } \int_{\partial \Omega}{ f d\sigma},$$ where $c_n \leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \Omega_2 \subset \Omega_1 \subset \mathbb{R}^n$: $$ \frac{|\partial \Omega_1|}{|\Omega_1|} \frac{| \Omega_2|}{|\partial \Ome…

Pure mathematicsInequalitymedia_common.quotation_subject01 natural sciencesConvexitysymbols.namesakeMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaHadamard transformHermite–Hadamard inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Hermite-Hadamard inequality subharmonic functions convexity.0101 mathematicsComputingMilieux_MISCELLANEOUSsubharmonic functionsmedia_commonMathematicsSubharmonic functionHermite polynomialsconvexity010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Mathematics - Functional AnalysisMSC : 26B25 28A75 31A05 31B05 35B50Mathematics::LogicHermite-Hadamard inequalityDifferential geometryMathematics - Classical Analysis and ODEsFourier analysissymbols010307 mathematical physicsGeometry and TopologyThe Journal of Geometric Analysis
researchProduct

A Global View on Generic Geometry

2018

We describe how the study of the singularities of height and distance squared functions on submanifolds of Euclidean space, combined with adequate topological and geometrical tools, shows to be useful to obtain global geometrical properties. We illustrate this with several results concerning closed curves and surfaces immersed in \(\mathbb {R}^n\) for \(n=3,4, 5\).

Pure mathematicsInflection pointEuclidean spaceGravitational singularityConvexityMathematics
researchProduct

Approximation by uniform domains in doubling quasiconvex metric spaces

2020

We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.

Pure mathematicsPrimary 30L99. Secondary 46E35 26B30Algebraic geometry01 natural sciencesDomain (mathematical analysis)funktioteoriaQuasiconvex functionMathematics::Group TheoryquasiconvexityMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsuniform domainComputer Science::DatabasesMathematicsPartial differential equationFunctional analysis010102 general mathematicsMetric Geometry (math.MG)General Medicinemetriset avaruudetMetric spaceBounded functionSobolev extension010307 mathematical physicsfunktionaalianalyysi
researchProduct

Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

2013

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p > 1) in a Lipschitz bounded domain Ω in ℝn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne—Weinberger inequality.

Pure mathematicsp-Laplace operatorGeneral MathematicsMathematics::Spectral TheoryLipschitz continuityUpper and lower boundsDomain (mathematical analysis)ConvexityCombinatoricslower boundsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsNeumann eigenvalueIsoperimetric inequalityLaplace operatorEigenvalues and eigenvectorsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Relaxation of certain integral functionals depending on strain and chemical composition

2012

We provide a relaxation result in $BV \times L^q$, $1\leq q < +\infty$ as a first step towards the analysis of thermochemical equilibria.

RelaxationStrain (chemistry)Applied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisThermodynamics02 engineering and technologyRelaxation; functions of bounded variation; quasiconvexity.01 natural sciencesquasiconvexityMathematics - Analysis of PDEsfunctions of bounded variation0202 electrical engineering electronic engineering information engineeringFOS: MathematicsRelaxation (physics)020201 artificial intelligence & image processing0101 mathematicsPhysics::Chemical PhysicsChemical compositionMathematicsAnalysis of PDEs (math.AP)
researchProduct