Search results for "convolutional neural network"
showing 9 items of 179 documents
Convolutional Neural Network With Shape Prior Applied to Cardiac MRI Segmentation.
2019
In this paper, we present a novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI). The proposed model is an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy. Since the shape prior is computed offline only once, the execution of our model is not limited by its calculation. Our system takes as input raw magnetic resonance images, requires no manual preprocessing or image cropping and is trained to segment the endocardium and epicardium of the left ventricle, the endocardium of the right ventricle, as well as the center of the left ventricle. Wit…
Deep learning approach for prediction of impact peak appearance at ground reaction force signal of running activity
2020
Protruding impact peak is one of the features of vertical ground reaction force (GRF) that is related to injury risk while running. The present research is dedicated to predicting GRF impact peak appearance by setting a binary classification problem. Kinematic data, namely a number of raw signals in the sagittal plane, collected by the Vicon motion capture system (Oxford Metrics Group, UK) were employed as predictors. Therefore, the input data for the predictive model are presented as a multi-channel time series. Deep learning techniques, namely five convolutional neural network (CNN) models were applied to the binary classification analysis, based on a Multi-Layer Perceptron (MLP) classifi…
Fusion of CNN and sparse representation for threat estimation near power lines and poles infrastructure using aerial stereo imagery
2021
Abstract Fires or electrical hazards and accidents can occur if vegetation is not controlled or cleared around overhead power lines, resulting in serious risks to people and property and significant costs to the community. There are numerous blackouts due to interfering the trees with the power transmission lines in hilly and urban areas. Power distribution companies are facing a challenge to monitor the vegetation to avoid blackouts and flash-over threats. Recently, several methods have been developed for vegetation monitoring; however, existing methods are either not accurate or could not provide better disparity map in the textureless region. Moreover, are not able to handle depth discon…
Deep Convolutional Neural Network Based Object Detection Inference Acceleration Using FPGA
2022
Object detection is one of the most challenging yet essential computer vision research areas. It means labeling and localizing all known objects of interest on an input image using tightly fit rectangular bounding boxes around the objects. Object detection, having passed through several evolutions and progressions, nowadays relies on the successes of image classification networks based on deep convolutional neural networks. However, as the depth and complication of convolutional neural networks increased, detection speed reduced, and accuracy increased. Unfortunately, most computer vision applications, such as real-time object tracking on an embedded system, requires lightweight, fast and a…
An In-Depth Experimental Comparison of RNTNs and CNNs for Sentence Modeling
2017
The goal of modeling sentences is to accurately represent their meaning for different tasks. A variety of deep learning architectures have been proposed to model sentences, however, little is known about their comparative performance on a common ground, across a variety of datasets, and on the same level of optimization. In this paper, we provide such a novel comparison for two popular architectures, Recursive Neural Tensor Networks (RNTNs) and Convolutional Neural Networks (CNNs). Although RNTNs have been shown to work well in many cases, they require intensive manual labeling due to the vanishing gradient problem. To enable an extensive comparison of the two architectures, this paper empl…
A cultural heritage experience for visually impaired people
2020
Abstract In recent years, we have assisted to an impressive advance of computer vision algorithms, based on image processing and artificial intelligence. Among the many applications of computer vision, in this paper we investigate on the potential impact for enhancing the cultural and physical accessibility of cultural heritage sites. By using a common smartphone as a mediation instrument with the environment, we demonstrate how convolutional networks can be trained for recognizing monuments in the surroundings of the users, thus enabling the possibility of accessing contents associated to the monument itself, or new forms of fruition for visually impaired people. Moreover, computer vision …
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
Writer identification for historical handwritten documents using a single feature extraction method
2020
International audience; With the growth of artificial intelligence techniques the problem of writer identification from historical documents has gained increased interest. It consists on knowing the identity of writers of these documents. This paper introduces our baseline system for writer identification, tested on a large dataset of latin historical manuscripts used in the ICDAR 2019 competition. The proposed system yielded the best results using Scale Invariant Feature Transform (SIFT) as a single feature extraction method, without any preprocessing stage. The system was compared against four teams who participated in the competition with different feature extraction methods: SRS-LBP, SI…
Thermal anomalies detection in a photovoltaic plant using artificial intelligence: Italy case studies
2021
This paper proposes the application of artificial intelligence techniques for the identification of thermal anomalies that occur in a photovoltaic system due to malfunctions or faults, with the aim to limit the energy production losses by detecting faults at an early stage. The proposed approach is based on a Thermographic Non-Destructive Test conducted with Unmanned Aerial Vehicles equipped with a thermal imaging camera, which allows the detection of abnormal operating conditions without interrupting the normal operation of the PV system rapidly and cost-effectively. The thermographic images and videos are automatically inspected using a Convolutional Neural Network, developed by an open-s…