Search results for "copolymer"
showing 10 items of 1003 documents
Filmability and properties of compatibilized PA6/LDPE blends
2005
Blends of low density polyethylene (LDPE) and polyamide 6 (PA6), compatibilized with an ethylene-acrylic acid copolymer (EAA), either alone or combined with a low molar mass bis-oxazoline compound (PBO), have been processed in film blowing operations and the properties of the films have been investigated. Without of compatibilization, the filmability of the blend was very poor and no significant specimen was collected. As a result of the reactive compatibilization, the blends with EAA and even more with the EAA-PBO, were processed successfully in film blowing. The films of the quaternary blends were shown to possess satisfactory mechanical properties as a result of fine and stable morpholog…
Cationic and Zwitterionic Polymerizable Surfactants: Quaternary Ammonium Dialkyl Maleates. 1. Synthesis and Characterization
1999
Cationic and zwitterionic reactive dialkyl maleates with different hydrophobic chain lengths (R = C10H21, C12H25, C16H33, and C18H37), and some similar surfactants without double bonds were synthesized with an aim to use them as stabilizers in the batch and seeded emulsion copolymerization of styrene and butyl acrylate (part 2 of this series). Surfactants are obtained in a three-step synthesis, starting from ring opening of maleic anhydride, followed by O alkylation with an aminoalkyl compound, and finishing with quaternization of the amino group in the hydrophilic part of the molecule. The chemical structure of surfactants was confirmed by 1H NMR. Melting points and critical micelle concen…
PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses
2021
Contains fulltext : 232076.pdf (Publisher’s version ) (Open Access) Tumor-specific neoantigens can be highly immunogenic, but their identification for each patient and the production of personalized cancer vaccines can be time-consuming and prohibitively expensive. In contrast, tumor-associated antigens are widely expressed and suitable as an off the shelf immunotherapy. Here, we developed a PLGA-based nanoparticle vaccine that contains both the immunogenic cancer germline antigen NY-ESO-1 and an α-GalCer analog IMM60, as a novel iNKT cell agonist and dendritic cell transactivator. Three peptide sequences (85-111, 117-143, and 157-165) derived from immunodominant regions of NY-ESO-1 were se…
THERMOSENSITIVE CATIONIC BLOCK COPOLYMER AND CYCLODEXTRINS. INCLUSION COMPLEXES IN SOLUTION AND IN SOLID STATE
2010
Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats
2016
In this study the effect of amorphous calcium carbonate (ACC) microparticles and amorphous calcium polyphosphate (polyP) microparticles (termed aCa-polyP-MP) on bone mineral forming cells/tissue was investigated in vitro and in vivo. The ACC particles (termed ACC-P10-MP) were prepared in the presence of Na-polyP. Only the combinations of polyP and ACC microparticles enhanced the proliferation rate of human mesenchymal stem cells (MSCs). Gene expression studies revealed that ACC causes an upregulation of the expression of the cell membrane-associated carbonic anhydrase IX (CA IX; formation of ACC), while the transcript level of the alkaline phosphatase (ALP; liberation of orthophosphate from…
Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers.
2005
A series of polymer and copolymer networks with varying hydrophilicity and distribution of the hydrophilic groups was synthesized and biologically tested with monolayer culture of human chondrocytes in vitro. Cell viability (MTT), proliferation (BrdU incorporation) and aggrecan expression (PG ELISA) were quantified at 7 and 14 days from seeding. Both assays (MTT and BrdU) showed complementary results that are consistent with positive cellular adhesion on the material. When human chondrocytes were cultured on polymer substrates in which the hydrophilic groups were homogeneously distributed, hydrophobic substrates showed higher values in all the biological parameters analysed. Adhesion, proli…
Catechol-Initiated Polyethers: Multifunctional Hydrophilic Ligands for PEGylation and Functionalization of Metal Oxide Nanoparticles
2012
Bifunctional CA-PEG (catechol-poly(ethylene glycol)) and multifunctional CA-PEG-PGA/PEVGE (poly(glycidyl amine)/poly(ethylene glycol vinyl glycidyl ether)) ligands for the functionalization and solubilization of nanoparticles are introduced. Tunable polymers with polydispersities1.25 and molecular weights in the range 500-7700 g mol(-1) containing a catechol moiety for conjugation to metal oxide nanoparticles were prepared. The functional PEG ligands were synthesized starting from the acetonide-protected catechol initiator 2,2-dimethyl-1,3-benzodioxole-5-propanol (CA-OH) for oxyanionic polymerization. CA-OH was used both for homopolymerization of ethylene oxide (EO) as well as copolymerizat…
Catechol Acetonide Glycidyl Ether (CAGE): A Functional Epoxide Monomer for Linear and Hyperbranched Multi-Catechol Functional Polyether Architectures
2016
A protected catechol-containing epoxide monomer, catechol acetonide glycidyl ether (CAGE), is introduced. CAGE is conveniently obtained in three steps and enables the incorporation of surface-active catechol moieties into a broad variety of hydrophilic and biocompatible polyether architectures by copolymerization. Via acidic cleavage of the acetal protecting groups, the polymer-attached catechol functionalities are liberated and available for surface attachment or metal complexation. CAGE has been copolymerized with ethylene oxide and glycidol to obtain both linear poly(ethylene glycol) and hyperbranched polyglycerol copolymers, respectively, with multiple surface-adhesive catechol moieties…
Dynamic Self-Consistent Field Approach for Studying Kinetic Processes in Multiblock Copolymer Melts
2020
The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical processes in the diffusive, non-inertial regime. The central quantity in these approaches is the mobility function, which describes the effect of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a recent study [Mantha et al, Macromolecules 53, 3409 (2020)], we have developed a method to systematically construct mobility functions from reference fine-grained simulations. Here we focus on melts of linear chains …
Poly(glycolide) multi-arm star polymers: Improved solubility via limited arm length.
2010
Due to the low solubility of poly(glycolic acid) (PGA), its use is generally limited to the synthesis of random copolyesters with other hydroxy acids, such as lactic acid, or to applications that permit direct processing from the polymer melt. Insolubility is generally observed for PGA when the degree of polymerization exceeds 20. Here we present a strategy that allows the preparation of PGA-based multi-arm structures which significantly exceed the molecular weight of processable oligomeric linear PGA (<1000 g/mol). This was achieved by the use of a multifunctional hyperbranched polyglycerol (PG) macroinitiator and the tin(II)-2-ethylhexanoate catalyzed ring-opening polymerization of gly…