Search results for "copper"

showing 10 items of 3029 documents

Electrochemically assisted anion insertion in Au(I)–Cu(I) heterotrimetallic clusters bearing ferrocenyl groups: Application to the fluoride/chloride …

2010

The heterotrimetallic Au(I)–Cu(I) aggregate [{Au3Cu2(C2C6H4Fc)6}Au3(PPh2C6H4PPh2)3](PF6)2 exhibits a well-defined solid state electrochemistry in contact with aqueous media, based on ferrocenyl-centred oxidation processes involving anion insertion. Upon attachment of microparticulate deposits of the cluster to graphite electrodes, distinctive electrochemical responses can be obtained for fluoride and chloride ions in aqueous media. Keywords: Heterometallic clusters, Gold, Copper, Fluoride/chloride discrimination, Electrochemical anion insertion

Aqueous solutionInorganic chemistrychemistry.chemical_elementElectrochemistryCopperChloridelcsh:Chemistrychemistry.chemical_compoundlcsh:Industrial electrochemistrylcsh:QD1-999chemistryElectrodeElectrochemistrymedicineGraphiteFluorideMetallocenelcsh:TP250-261medicine.drugElectrochemistry Communications
researchProduct

Oxamidato complexes. Part 4. Electrochemical study of the copper(III)/copper(II) couple in monomeric N,N?-bis(substituent)oxamidatocopper(II) complex…

1993

The electrochemical behaviour of a series of monomeric N,N′-bis(substituent)oxamidato copper(II) complexes of formula Na2[Cu(3,5,3′,5′-X4obbz)]·4H2O [X = Cl (1), Br (2), I (3) and obbz = oxamidobis(benzoato)], Na2-[Cu(obbz)]·4H2O (4), Na2[Cu(5,5′-Me2obbz)]·4H2O (5), Na2[Cu(4,5,4,5′-(MeO)4obbz)]·4H2O(6),Na2[Cu(obp)]· 3.5H2O (7) (obp = oxamidobis(propionato)) and Na2[Cu(pba)]·6H2O (8), [pba = propylenebis(oxamate)] has been investigated by cyclic voltammetry, rotating disk electrode and coulometry in water and dimethylsulphoxide (dmso) solutions. NaNO3 (0.1 M) and n-Bu4NPF6 (0.1 M) were used as supporting electrolytes in H2O and dmso respectively, all solutions being thermostatted at 25 °C. I…

Aqueous solutionLigandOxamideInorganic chemistryMetals and AlloysSubstituentchemistry.chemical_elementMedicinal chemistryCopperInorganic Chemistrychemistry.chemical_compoundchemistryMaterials ChemistryRotating disk electrodeCyclic voltammetryOrganometallic chemistryTransition Metal Chemistry
researchProduct

Electrochemistry of copper complexes with macrocyclic polyamines containing pyrazole units.

2006

The voltammetric behaviour of bi- and mono-nuclear complexes formed in solution by Cu(2+) with three polyazacyclophanes containing pyrazole units in aqueous solution is described. Cyclic and square wave voltammetric responses at glassy carbon electrodes indicate that the reduction of copper-macrocycle complexes in solution takes place in two successive one-electron per Cu transfer processes coupled with preorganization and protonation reactions that mimic the behaviour of superoxide dismutase. The electrochemistry of ternary Cu(2+)-receptor-dopamine complexes exhibits significant differences with respect to the protection of the neurotransmitter from post-electron transfer cyclization react…

Aqueous solutionMacrocyclic CompoundsSuperoxide DismutaseDopamineInorganic chemistryMolecular Mimicrychemistry.chemical_elementProtonationSquare wavePyrazoleGlassy carbonElectrochemistryCopperInorganic Chemistrychemistry.chemical_compoundchemistryPolymer chemistryElectrochemistryOrganometallic CompoundsPolyaminesPyrazolesTernary operationCopperDalton transactions (Cambridge, England : 2003)
researchProduct

Polyfunctional Tetraaza-Macrocyclic Ligands: Zn(II), Cu(II) Binding and Formation of Hybrid Materials with Multiwalled Carbon Nanotubes

2017

The binding properties of HL1, HL2, and HL3 ligands toward Cu(II) and Zn(II) ions, constituted by tetraaza-macrocyclic rings decorated with pyrimidine pendants, were investigated by means of potentiometric and UV spectrophotometric measurements in aqueous solution, with the objective of using the related HL-M(II) (HL = HL1–HL3; M = Cu, Zn) complexes for the preparation of hybrid MWCNT-HL-M(II) materials based on multiwalled carbon nanotubes (MWCNTs), through an environmentally friendly noncovalent procedure. As shown by the crystal structure of [Cu(HL1)](ClO4)2, metal coordination takes place in the macrocyclic ring, whereas the pyrimidine residue remains available for attachment onto the s…

Aqueous solutionMaterials sciencePyrimidine010405 organic chemistryGeneral Chemical EngineeringInorganic chemistryPotentiometric titrationStackingGeneral ChemistryCrystal structure010402 general chemistryRing (chemistry)01 natural sciencesArticle0104 chemical sciencesMetallcsh:Chemistrychemistry.chemical_compoundchemistrylcsh:QD1-999visual_artPolymer chemistryvisual_art.visual_art_mediumHybrid materialcarbon nanotubes copper zinc macrocycles hybrid materials functionalized carbon nanotubesACS Omega
researchProduct

Complex formation equilibria between the acetazolamide ((5-acetamido-1,3,4-thiadiazole)-2-sulphonamide), a potent inhibitor of carbonicanhydrase, and…

1990

Abstract The stability constants for the equilibrium of complexation between acetazolamide and the divalent metal ions copper(II), nickel(II), zinc(II), and cobalt(II) have been determined by potentiometry both in water and in water-ethanol 50 vol. % solutions in 0.15 mol dm −3 NaNO 3 at 25°C. This mixed solvent has been used in order to obtain higher concentrations of acetazolamide in solution. For copper(II) and nickel(II), the binuclear species [Cu 2 (Acm) 2 ] and [Ni 2 (Acm) 3 ] 2− are detected in both solvents together with hydroxo species. The values of the stability constants are always higher in the mixed solvent than in water. For cobalt(II) and zinc(II), while in aqueous solution …

Aqueous solutionMetal ions in aqueous solutionInorganic chemistrychemistry.chemical_elementZincBiochemistryCopperInorganic ChemistryNickelchemistryStability constants of complexesChemical stabilityCobaltNuclear chemistryJournal of Inorganic Biochemistry
researchProduct

Selective recognition of fluoride anion in water by a copper(II) center embedded in a hydrophobic cavity

2014

The ability of a water-soluble pentacationic calix[6]arene-based CuII complex to bind anions in water has been explored. Quite remarkably, the complex exhibits strong and selective fluoride binding in the pH range of 6–7. The binding constant at pH 5.9 was evaluated to be 85 000 M−1, which is one of the highest values ever reported for a fluoride probe in water and at this pH. The complex also binds chloride ions, but 1000 times less efficiently. The combination of the calix[6]arene hydrophobic cavity with the CuII complex, presenting its labile site in the endo position, is the reason for the selective recognition process. The single crystal X-ray structure of the organo-soluble parent com…

Aqueous solutionMolecular modelChemistryInorganic chemistrychemistry.chemical_elementGeneral ChemistryChlorideBinding constantCopperchemistry.chemical_compoundPolymer chemistrymedicineWater clusterSingle crystalFluorideta116medicine.drugChemical Science
researchProduct

Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts

2000

Abstract Two series of pumice-supported palladium and palladium–copper catalysts, prepared by impregnation with different palladium and copper precursors, were tested for the hydrogenation of aqueous nitrate and nitrite solutions. Measurements were performed in a stirred tank reactor, operating in batch conditions, in buffered water solution at atmospheric pressure and at 293 K. The activities of the catalysts were calculated in terms of nitrate and/or nitrite removal. With the monometallic Pd/pumice, the reduction of nitrite is highly selective; only 0.2% of the initial nitrite content is converted to ammonium ions. The activity in terms of turn over frequency (TOF) is higher as compared t…

Aqueous solutionProcess Chemistry and TechnologyInorganic chemistrychemistry.chemical_elementSelective catalytic reductionCopperCatalysisCatalysischemistry.chemical_compoundchemistryNitrateAmmoniumNitriteGeneral Environmental SciencePalladiumApplied Catalysis B: Environmental
researchProduct

ChemInform Abstract: Synthesis and Magnetic Properties of Bis(μ-hydroxo)bis((2,2′-bipyridyl)copper(II)) Squarate. Crystal Structure of Bis(μ-hydroxo)…

1990

Abstract The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state. Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P 1 , with a = 9.022(2), b = 9.040(2), c = 8.409(2) A, α = 103.51(2…

Aqueous solutionTetrahydrateChemistrychemistry.chemical_elementGeneral MedicineCrystal structureTriclinic crystal systemAtmospheric temperature rangeCopperlaw.inventionCrystallographychemistry.chemical_compoundlawElectron paramagnetic resonanceGround stateChemInform
researchProduct

Temporal aspects of copper homeostasis and its crosstalk with hormones

2015

To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxin…

Arabidopsis thalianaEstrès oxidatiuCircadian clockFisiologiahormone signallinghormone signalingMetal toxicityOryza sativaReviewPlant ScienceBiologyCircadian clocklcsh:Plant culturechemistry.chemical_compoundAuxinhormone biosynthesisoxidative stresslcsh:SB1-1110Abscisic acidchemistry.chemical_classificationGeneticsfood and beveragescopper homeostasiscopper transportersCell biologyOxidative stress.Crosstalk (biology)chemistryGibberellinHomeostasisHormoneFrontiers in Plant Science
researchProduct

The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies

2021

Copper and iron proteins play a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy-consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interferences with other metals and protecting metal-sensitive processes. In this review, we propose that posttranscriptional Modulators of Metalloprotein messenger RNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthe…

Arabidopsis thalianaPhysiologyMetalationIronArabidopsischemistry.chemical_elementSaccharomyces cerevisiaePlant ScienceMetalMetalloproteinCth2MetalloproteinsMetalloproteinMetalationAnimalsArabidopsis thalianaIron deficiency (plant disorder)Mammalschemistry.chemical_classificationbiologyIron deficiencyIron DeficienciesCopper deficiencybiology.organism_classificationCopperCell biologyCu-miRNAsMetal flowchemistryMetalsvisual_artvisual_art.visual_art_mediumIRPPosttranscriptional regulationCopperFunction (biology)Journal of Experimental Botany
researchProduct