Search results for "coronal mass ejection"
showing 10 items of 41 documents
Uncertainties in polarimetric 3D reconstructions of coronal mass ejections
2015
P.P. acknowledges STFC for financial support. Date of Acceptance: 21/01/2015 Aims. The aim of this work is to quantify the uncertainties in the three-dimensional (3D) reconstruction of the location of coronal mass ejections (CMEs) obtained with the so-called polarization ratio technique. The method takes advantage of the different distributions along the line of sight of total (tB) and polarized (pB) brightnesses emitted by Thomson scattering to estimate the average location of the emitting plasma. This is particularly important to correctly identify of CME propagation angles and unprojected velocities, thus allowing better capabilities for space weather forecastings. Methods. To this end, …
Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23
2012
Abstract We present the results of an investigation from the Sun to the Earth of the sequence of events that caused major Dst decreases (Δ Dst ≤ – 100 nT during 1 h) that occurred during 1996–2005. These events are expected to be better related to geomagnetic induced current (GIC) events than those events where any geomagnetic index is far from its quiet time value. At least one full halo CME with a speed on the plane of sky above 900 km/s participates in every studied event. The seven events were triggered by interplanetary signatures, which arise as a consequence of interaction among different solar ejections. The interaction arises at different stages from the solar surface, between segm…
First Determination of 2D Speed Distribution within the Bodies of Coronal Mass Ejections with Cross-correlation Analysis
2019
The determination of the speed of Coronal Mass Ejections (CMEs) is usually done by tracking brighter features (such as the CME front and core) in visible light coronagraphic images and by deriving unidimensional profiles of the CME speed as a function of altitude or time. Nevertheless, CMEs are usually characterized by the presence of significant density inhomogeneities propagating outward with different radial and latitudinal projected speeds, resulting in a complex evolution eventually forming the Interplanetary CME. In this work, we demonstrate for the first time how coronagraphic image sequences can be analyzed with cross-correlation technique to derive 2D maps of the almost instantaneo…
Hydrogen non-equilibrium ionisation effects in coronal mass ejections
2020
This research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214). D.H.M. would like to thank both the UK STFC and the ERC (Synergy grant: WHOLE SUN, grant Agreement No. 810218) for financial support. D.H.M. and P.P. would like to thank STFC for IAA funding under grant number SMC1-XAS012. This work used the DiRAC@Durham facility man-aged by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk. The equipment was funded by BEIS capital fundin…
Determining the source and eruption dynamics of a stealth CME using NLFFF modelling and MHD simulations
2021
Coronal mass ejections (CMEs) that exhibit weak or no eruption signatures in the low corona, known as stealth CMEs, are problematic as upon arrival at Earth they can lead to geomagnetic disturbances that were not predicted by space weather forecasters. We investigate the origin and eruption of a stealth event that occurred on 2015 January 3 that was responsible for a strong geomagnetic storm upon its arrival at Earth. To simulate the coronal magnetic field and plasma parameters of the eruption we use a coupled approach. This approach combines an evolutionary nonlinear force-free field model of the global corona with a MHD simulation. The combined simulation approach accurately reproduces th…
Effect of gravitational stratification on the propagation of a CME
2013
Our aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. We ran a set of MHD simulations that adopt an eruptive initial magnetic configuration that has already been shown to be suitable for a flux rope ejection. We varied the temperature of the backgroud corona and the intensity of the initial magnetic field to tune the gravitational stratification and the amount of ejected magnetic flux. We used an automatic technique to track the expansion and the propagation of the magnetic flux rope in the MHD simula…
Simulating AIA observations of a flux rope ejection
2014
D.H.M. would like to thank STFC, the Leverhulme Trust and the European Commission’s Seventh Framework Programme (FP7/2007-2013) for their financial support. P.P. would like to thank the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement SWIFF (project 263340, http://www.swiff.eu) and STFC for financial support. These results were obtained in the framework of the projects GOA/2009-009 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex 9). The research leading to these results has also received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreements SOLSPANET (project No. 269299, http:// ww…
Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test
2015
D.H.M. would like to thank STFC and the Leverhulme Trust for their financial support. P.P. would like to thank STFC and the Leverhulme Trust. The computational work for this paper was carried out on the joint STFC and SFC (SRIF) funded cluster at the University of St Andrews (Scotland, UK). Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from whit…
PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION
2013
In this paper we introduce a new diagnostic technique that uses prominence EUV and UV absorption to determine the prominence plasma electron temperature and column emission measure, as well as He/H relative abundance; if a realistic assumption on the geometry of the absorbing plasma can be made, this technique can also yield the absorbing plasma electron density. This technique capitalizes on the absorption properties of Hydrogen and Helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when prominence plasmas are hotter than 15,000 K and thus it is ideally suited for rapidly hea…
The first coronal mass ejection observed in both visible-light and UV HI Ly-α channels of the Metis coronagraph on board Solar Orbiter
2021
Context.The Metis coronagraph on board Solar Orbiter offers a new view of coronal mass ejections (CMEs), observing them for the first time with simultaneous images acquired with a broad-band filter in the visible-light interval and with a narrow-band filter around the H ILy-αline at 121.567 nm, the so-called Metis UV channel.Aims.We show the first Metis observations of a CME, obtained on 16 and 17 January 2021. The event was also observed by the EUI/FSI imager on board Solar Orbiter, as well as by other space-based coronagraphs, such as STEREO-A/COR2 and SOHO/LASCO/C2, whose images are combined here with Metis data.Methods.Different images are analysed here to reconstruct the 3D orientation…