Search results for "correlation function"

showing 10 items of 164 documents

Yangian Symmetry for Fishnet Feynman Graphs

2017

Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and four dimensions dominate the correlation functions and scattering amplitudes in specific double scaling limits of planar, gamma-twisted N=4 super Yang-Mills or ABJM theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the plana…

High Energy Physics - Theorydimension: 4Feynman graphScalar (mathematics)[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesConformal mapintegrability01 natural sciencesalgebra: conformal[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]symbols.namesake0103 physical sciencesFeynman diagramcorrelation function010306 general physicsABJM modelMathematical PhysicsMathematical physicsPhysicsfield theory: conformalSpacetimeAdS/CFT correspondence010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Mathematical analysisscattering amplitudescalingdifferential equationsMathematical Physics (math-ph)FermionScattering amplitudespace-time: dimension: 6AdS/CFT correspondenceHigh Energy Physics - Theory (hep-th)symmetry: Yangiansupersymmetry: 4symbols[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Yangian
researchProduct

First Observation of an Attractive Interaction between a Proton and a Cascade Baryon

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. This Letter presents the first experimental observation of the attractive strong interaction between a proton and a multistrange baryon (hyperon) Ξ−. The result is extracted from two-particle correlations of combined p−Ξ−⊕¯p−¯Ξ+ pairs measured in p−Pb collisions at √sNN=5.02  TeV at the LHC with ALICE. The measured correlation function is compared with the prediction obtained assuming only an attractive Coulomb interaction and a stand…

Equation of state:Kjerne- og elementærpartikkelfysikk: 431 [VDP]HadronGeneral Physics and Astronomyinteraction: Coulombhyperon01 natural sciencesdensity [saturation]hyperon productionALICEBound state[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coulombn: matterBOUND-STATE; COLLISIONScorrelation functionHeavy IonNuclear Experimentneutron starhadron-hadron scatteringlatticePhysicsPhysicsstrong interactionVDP::Kjerne- og elementærpartikkelfysikk: 431ddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]quark gluon plasmaPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431saturation: densitycorrelation: two-particleCOLLISIONSeducationStrong interactionPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]BOUND-STATE114 Physical sciencesmatter [n]Nuclear physicsinteraction: Coulomb ; correlation: two-particle ; saturation: density ; n: matter ; strong interaction ; lattice ; hyperon ; correlation function ; equation of state ; CERN LHC Coll ; neutron star ; ALICE ; experimental results ; 5020 GeV-cms/nucleon0103 physical sciencesddc:530Neutron5020 GeV-cms/nucleon010306 general physicstwo-particle [correlation]equation of stateCoulomb [interaction]Heavy Ion Physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]HyperonALICE experimenthyperon production hadron-hadron scattering ALICE experimentNATURAL SCIENCES. Physics.BaryonElementary Particles and FieldsHigh Energy Physics::Experimentexperimental results
researchProduct

Mode-coupling theory of the glass transition for confined fluids

2012

We present a detailed derivation of a microscopic theory for the glass transition of a liquid enclosed between two parallel walls relying on a mode-coupling approximation. This geometry lacks translational invariance perpendicular to the walls, which implies that the density profile and the density-density correlation function depends explicitly on the distances to the walls. We discuss the residual symmetry properties in slab geometry and introduce a symmetry adapted complete set of two-point correlation functions. Since the currents naturally split into components parallel and perpendicular to the walls the mathematical structure of the theory differs from the established mode-coupling eq…

Mathematical analysisFOS: Physical sciencesCovarianceCondensed Matter - Soft Condensed MatterResidual01 natural sciencesSymmetry (physics)010305 fluids & plasmasCorrelation function (statistical mechanics)Classical mechanics0103 physical sciencesMode couplingPerpendicularSoft Condensed Matter (cond-mat.soft)Microscopic theory010306 general physicsGlass transition[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]Mathematics
researchProduct

The SVZ plasmon

1985

The sum rule technique of Shifman, Vainshtein and Zakharov is applied to a non-relativistic many-body system, the homogeneous, degenerate electron gas. The operator product expansion for the nonrelativistic correlation function is derived and shown to be equivalent in lowest order to a moment expansion. The nonperturbative terms in this expansion characterize the interacting ground state (“vacuum”) of the system. For the electron gas they can be related to the correlation energy which is very well known. Following as close as possible the SVZ procedure the mass of the plasmon (i.e. the dispersion coefficient of the collective plasma excitation) is calculated and compared with results from c…

PhysicsPhysics and Astronomy (miscellaneous)Correlation functionQuantum electrodynamicsQuantum mechanicsDegenerate energy levelsSum rule in quantum mechanicsOperator product expansionFermi gasGround stateEngineering (miscellaneous)PlasmonExcitationZeitschrift f�r Physik C Particles and Fields
researchProduct

Electron dynamical response in InP semiconductors driven by fluctuating electric fields

2015

Abstract The complexity of electron dynamics in low-doped n-type InP crystals operating under fluctuating electric fields is deeply explored and discussed. In this study, we employ a multi-particle Monte Carlo approach to simulate the non-linear transport of electrons inside the semiconductor bulk. All possible scattering events of hot electrons in the medium, the main details of the band structure, as well as the heating effects, are taken into account. The results presented in this study derive from numerical simulations of the electron dynamical response to the application of a sub-Thz electric field, fluctuating for the superimposition of an external source of Gaussian correlated noise.…

PhysicsNoise powerCondensed matter physicsField (physics)Anomalous diffusionGeneral MathematicsApplied MathematicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsElectronNoise (electronics)Noise processes and phenomena High field and nonlinear effects Monte Carlo simulations Electron transportSettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Correlation function (statistical mechanics)AmplitudeElectric field
researchProduct

Microstructure reconstruction using entropic descriptors

2009

A multi-scale approach to the inverse reconstruction of a pattern's microstructure is reported. Instead of a correlation function, a pair of entropic descriptors (EDs) is proposed for stochastic optimization method. The first of them measures a spatial inhomogeneity, for a binary pattern, or compositional one, for a greyscale image. The second one quantifies a spatial or compositional statistical complexity. The EDs reveal structural information that is dissimilar, at least in part, to that given by correlation functions at almost all of discrete length scales. The method is tested on a few digitized binary and greyscale images. In each of the cases, the persuasive reconstruction of the mic…

FOS: Computer and information sciencesStatistical Mechanics (cond-mat.stat-mech)General MathematicsComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionGeneral EngineeringGeneral Physics and AstronomyBinary numberInverseFOS: Physical sciencesBinary patternGrayscaleImage (mathematics)CorrelationCorrelation function (statistical mechanics)Computer Science::Computer Vision and Pattern RecognitionStochastic optimizationStatistical physicsCondensed Matter - Statistical MechanicsMathematics
researchProduct

Nucleon axial charge in lattice QCD with controlled errors

2012

We report on our calculation of the nucleon axial charge ${g}_{\mathrm{A}}$ in QCD with two flavors of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find ${g}_{\mathrm{A}}=1.223\ifmmode\pm\else\textpm\fi{}0.063(\mathrm{stat}{)}_{\ensuremath{-}0.060}^{+0.035}(\mathrm{syst})$, in good agreement with the experimental value.

PhysicsQuantum chromodynamicsQuarkNuclear and High Energy PhysicsParticle physicsPionHigh Energy Physics::LatticeLattice field theoryHigh Energy Physics::ExperimentCharge (physics)Lattice QCDCorrelation function (quantum field theory)NucleonPhysical Review D
researchProduct

The Schur Expansion of Characteristic Polynomials and Random Matrices

2021

We develop a new framework to compute the exact correlators of characteristic polynomials, and their inverses, in random matrix theory. Our results hold for general potentials and incorporate the effects of an external source. In matrix model realizations of string theory, these correspond to correlation functions of exponentiated "(anti-)branes" in a given background of "momentum branes". Our method relies on expanding the (inverse) determinants in terms of Schur polynomials, then re-summing their expectation values over the allowed representations of the symmetric group. Beyond unifying previous, seemingly disparate calculations, this powerful technique immediately delivers two new result…

High Energy Physics - TheoryHigh Energy Physics - Theory (hep-th)[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Mathematical Physics (math-ph)correlation functionmatrix model: random[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]string modeldeterminantMathematical Physics
researchProduct

Incommensurate phases of a bosonic two-leg ladder under a flux

2016

A boson two--leg ladder in the presence of a synthetic magnetic flux is investigated by means of bosonization techniques and Density Matrix Renormalization Group (DMRG). We follow the quantum phase transition from the commensurate Meissner to the incommensurate vortex phase with increasing flux at different fillings. When the applied flux is $\rho \pi$ and close to it, where $\rho$ is the filling per rung, we find a second incommensuration in the vortex state that affects physical observables such as the momentum distribution, the rung-rung correlation function and the spin-spin and charge-charge static structure factors.

Quantum phase transitionBosonizationBosonisation[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]IncommensurationsFOS: Physical sciencesGeneral Physics and Astronomychamps de jauge artificiels01 natural sciences010305 fluids & plasmasPhysics and Astronomy (all)Condensed Matter - Strongly Correlated ElectronsCorrelation functionGauge fieldsCondensed Matter::Superconductivity0103 physical sciencesBosonizationtranstion commensurable-incommensurable010306 general physicsCommensurate-Incommensurate transitions[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]BosonPhysicsCondensed Matter::Quantum GasesStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsartificial gauge fieldsDensity matrix renormalization groupGauge fields; Incommensurations; Meissner to vortex transition; Physics and Astronomy (all)Vortex stateMagnetic fluxVortexQuantum gases. Strongly coupled many-particle systems. Reduced dimensionality.Quantum Gases (cond-mat.quant-gas)Meissner to vortex transitionCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum GasesQuantum gases. Strongly coupled many-particle systems. Reduced dimensionality
researchProduct

Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization

2020

We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…

1 [isospin]Particle physicsdecay constant [rho(770)]High Energy Physics::Latticeclover [fermion]energy spectrumFOS: Physical sciencesWilson [quark]01 natural sciencesphase shiftHigh Energy Physics - LatticePionvector [correlation function]Charge radius0103 physical sciencesmagnetic moment [muon]quantum chromodynamicsmass [rho(770)]hadronic [vacuum polarization]ddc:530Vacuum polarizationflavor: 2 [quark]010306 general physicsnumerical calculationscharge radius [pi]PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics - Lattice (hep-lat)scatteringlattice field theoryLattice QCDFermionBreit-Wignermass dependence [quark]form factor [pi]effect [finite size]vector [current]quantizationPhysical Review D
researchProduct