Search results for "correlation function"
showing 10 items of 164 documents
<title>Correlation effects in the disordered ferroelectrics</title>
2003
ABSTRACT The calculation of the correlation radius distribution function is performed for the cases of undamped and overdamped softmode dispersion laws. Taking into account the correlation radius dependence on the random field and this field distribution function we carried out the theoretical calculation of the correlation radius distribution function dependence ontemperature, damping coefficient and random field distribution function parameters. It was shown that at temperaturehigher than Burns temperature Td the most probable value of the correlation radius is equal to its maximal valueindependently on the system disorder, while in the dipole glass state it is close to the minimal value …
Vibrational dephasing of νs(OH) in 2,6-dichloro-4-nitrophenol
1988
Abstract A detailed analysis of the infrared bandshape of ν s (OH) in intramolecularly hydrogen-bonded 2,6-dichloro-4-nitrophenol in a series of solvents is presented. A distinct dependence of the bandshape and relaxation parameters on the polarity of solvent molecules has been found. The band shifts to lower wavenumbers, broadens and becomes more Gaussian with increasing solvent polarity; correspondingly, the correlation function decays faster and the correlation time decreases. The results are compared with those of previously studied systems. Factors determing the bandshape are discussed.
Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene
1996
Algorithms for calculating singlet excitation energies in the coupled cluster singles and doubles (CCSD) model are discussed and an implementation of an atomic-integral direct algorithm is presented. Each excitation energy is calculated at a cost comparable to that of the CCSD ground-state energy. Singlet excitation energies are calculated for benzene using up to 432 basis functions. Basis-set effects of the order of 0.2 eV are observed when the basis is increased from augmented polarized valence double-zeta (aug-cc-pVDZ) to augmented polarized valence triple-zeta (aug-cc-pVTZ) quality. The correlation problem is examined by performing calculations in the hierarchy of coupled cluster models…
Comparative Hybrid Hartree-Fock-DFT Calculations of WO2-Terminated Cubic WO3 as Well as SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) Surfaces
2021
We greatly acknowledge the financial support via the ERAF Project No. 1.1.1.1/18/A/073. Calculations were performed using Latvian Super Cluster (LASC), located in the Center of Excellence at Institute of Solid State Physics, the University of Latvia, which is supported by European Union Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under Grant Agreement No. 739508, project CAMART.
Single chain structure in thin polymer films: Corrections to Flory's and Silberberg's hypotheses
2005
Conformational properties of polymer melts confined between two hard structureless walls are investigated by Monte Carlo simulation of the bond-fluctuation model. Parallel and perpendicular components of chain extension, bond-bond correlation function and structure factor are computed and compared with recent theoretical approaches attempting to go beyond Flory's and Silberberg's hypotheses. We demonstrate that for ultrathin films where the thickness, $H$, is smaller than the excluded volume screening length (blob size), $\xi$, the chain size parallel to the walls diverges logarithmically, $R^2/2N \approx b^2 + c \log(N)$ with $c \sim 1/H$. The corresponding bond-bond correlation function d…
Monte Carlo simulation of dimensional crossover in the XY model.
1993
We report Monte Carlo simulations of Villain's periodic Gaussian XY model on ${\mathit{L}}^{2}$\ifmmode\times\else\texttimes\fi{}N lattices of film geometry (L\ensuremath{\gg}N) with up to N=16 layers, employing the single-cluster update algorithm combined with improved estimators for measurements. The boundary conditions are periodic within each layer and free at the bottom and top layer. Based on data for the specific heat, the spin-spin correlation function, and the susceptibility in the high-temperature phase we study the crossover from three- to two-dimensional behavior as criticality is approached. For the transition temperatures, determined from Kosterlitz-Thouless fits to the correl…
Correlation spectroscopy in molten and supercooled antimony trichloride.
1990
Correlation spectroscopy measurements performed on molten and supercooled antimony trichloride with the homodyne technique show correlation functions that have a nonexponential behavior. Two well-defined distributions of correlation times can be observed in different temporal regions. This behavior is discussed in terms of a structural relaxation of clusters dynamically formed by intermolecular and interchain bonds. The Arrhenius plot of these correlation times shows a linear behavior with the same activation energy for both. In contrast, the activation energy of shear viscosity has a different value, showing that the processes determining the temperature behavior of \ensuremath{\tau} and $…
First-Principles Study on Polymorphs of AgVO3: Assessing to Structural Stabilities and Pressure-Induced Transitions
2017
In this paper, we present a comprehensive theoretical study, based on density-functional theory calculations, and which focuses on the structural and electronic properties of silver vanadium oxide (AgVO3) in the monoclinic [Cm (β-AgVO3), C2/c (α-AgVO3), and Cc], orthorhombic (Amm2), and cubic (Pm3̅m) phases from 0–30 GPa. The structural and electronic properties, the stability of different phases, and the pressure-induced solid–solid phase transitions of AgVO3 have been previously studied. The effects of pressure on the band structures, energy–gap values, density of states, and vibrational frequencies are also studied. Numerical and analytical calculations are conducted to obtain the lattic…
A CRITICAL VIEW ON THE PERTURBATIVE RG METHOD
2012
The perturbative renormalization group (RG) treatment of the Ginzburg–Landau model is reconsidered based on the Feynman diagram technique. We derive RG flow equations, exactly calculating all vertices appearing in the perturbative RG transformation of the φ4 model up to the ε3 order of the ε-expansion. The Fourier-transformed two-point correlation function G(k) has been considered. Although the ε-expansion of X(k) = 1/G(k) is well defined on the critical surface, we have revealed an inconsistency with the exact rescaling of X(k), represented as an expansion in powers of k at k →0. This new result can serve as a basis to challenge the correctness of the ε-expansion-based perturbative RG met…
Noise-induced resonance-like phenomena in InP crystals embedded in fluctuating electric fields
2016
We explore and discuss the complex electron dynamics inside a low-doped n-type InP bulk embedded in a sub-THz electric field, fluctuating for the superimposition of an external source of Gaussian correlated noise. The results presented in this study derive from numerical simulations obtained by means of a multi-valley Monte Carlo approach to simulate the nonlinear transport of electrons inside the semiconductor crystal. The electronic noise characteristics are statistically investigated by calculating the correlation function of the velocity fluctuations, its spectral density and the integrated spectral density, i.e. the total noise power, for different values of both amplitude and frequenc…