Search results for "coupled cluster"
showing 10 items of 175 documents
Explicitly correlated connected triple excitations in coupled-cluster theory.
2009
A way to incorporate explicit electron correlation into connected triple excitations in coupled-cluster theory is proposed. The new ansatz is applied to the coupled-cluster singles and doubles model with noniterative triple excitations [CCSD(T)] and does not introduce any further sets of equations to be solved. A first implementation using automated generation and string-based evaluation of the explicit expressions is reported. The results demonstrate that the ansatz significantly enhances the basis set convergence of the noniterative triple excitation correction and thus improves upon previous approaches to explicitly correlated CCSD(T).
Variational Cluster Methods in Coordinate Space for Small Systems: Center of Mass Corrections Made Easy
1991
A reexamination of the center of mass problem for light systems in the context of coupled cluster theory has produced a new variational version of the method which is developed entirely in coordinate space. It involves independent cluster functions which depend only on the relative coordinates of the subclusters of the system. In applications to the 4He nucleus described via a number of phenomenological and quasirealistic microscopic Wigner potentials, the method is shown to be quantitatively rather accurate, producing in all cases almost exact results for the ground-state energies at the SUB(3) level of approximation.
Spin-restricted open-shell coupled-cluster theory for excited states
2000
Using a linear-response approach, the recently introduced spin-restricted coupled-cluster (SR-CC) theory is extended to the treatment of excited states of high-spin open-shell molecules. Explicit equations are given within the usual singles and doubles approximation and our implementation (within an existing spin–orbital code) is described. It is shown that in SR-CC theory, due to spin constraints, the spin-expectation value for the excited states calculated as corresponding energy derivatives always corresponds to the exact value. In addition, the SR-CC singles and doubles (SR-CCSD) approach is extended to include also the so-called pseudotriple excitations (best described as double excita…
Coupled-cluster singles, doubles and triples (CCSDT) calculations of atomization energies
2000
Atomization energies have been calculated for CO, H2O, F-2, HF, N-2 and CH2 (the (1)A(1) state) using the coupled-duster singles, doubles and triples (CCSDT) model as well as the coupled-cluster singles and doubles model with a perturbative correction for triples [CCSD(T)]. TheCCSD(T) model provides an excellent approximation to the CCSDT model; at the cc-pV5Z basis set level, the CCSDT valence triples contribution is underestimated by 9.1% (0.8 kJ/mol) for CH, and overestimated for the remaining molecules by as little as 4.3%(1.3 kJ/mol) for F-2,and as much as 8.4% (3.0 kJ/mol) for N-2. At the CCSDT level, the agreement with experiment is not improved, suggesting that some cancellation of …
Approximate treatment of higher excitations in coupled-cluster theory.
2005
The possibilities for the approximate treatment of higher excitations in coupled-cluster (CC) theory are discussed. Potential routes for the generalization of corresponding approximations to lower-level CC methods are analyzed for higher excitations. A general string-based algorithm is presented for the evaluation of the special contractions appearing in the equations specific to those approximate CC models. It is demonstrated that several iterative and noniterative approximations to higher excitations can be efficiently implemented with the aid of our algorithm and that the coding effort is mostly reduced to the generation of the corresponding formulas. The performance of the proposed and …
Towards the Hartree-Fock and coupled-cluster singles and doubles basis set limit: A study of various models that employ single excitations into a com…
2010
In explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] calculations, the basis set incompleteness error in the double excitations is reduced to such an extent that the error in the Hartree–Fock energy and the error in the single excitations become important. Using arguments from perturbation theory to systematically truncate the coupled-cluster singles and CCSD(F12) Lagrangians, a series of coupled-cluster models are proposed and studied that reduce these basis set incompleteness errors through additional single excitations into a complementary auxiliary basis. Convergence with model and size of complementary basis is rapid and there appears to be no need to go beyond seco…
Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods.
2018
A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are …
Closed-shell coupled-cluster theory with spin-orbit coupling
2008
A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelat…
Analytic energy gradients in closed-shell coupled-cluster theory with spin-orbit coupling
2008
Gradients in closed-shell coupled-cluster (CC) theory with spin-orbit coupling included in the post Hartree-Fock treatment have been implemented at the CC singles and doubles (CCSD) level and at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The additional computational effort required in analytic energy-gradient calculations is roughly the same as that for ground-state energy calculations in the case of CCSD, and it is about twice in the case of CCSD(T) calculations. The structures, harmonic frequencies, and dipole moments of some heavy-element compounds have been calculated using the present analytic energy-gradient techniques including spin-orbit co…
Explicitly correlated coupled-cluster theory using cusp conditions. I. Perturbation analysis of coupled-cluster singles and doubles (CCSD-F12)
2010
Geminal functions based on Slater-type correlation factors and fixed expansion coefficients, determined by cusp conditions, have in recent years been forwarded as an efficient and numerically stable method for introducing explicit electron correlation into coupled-cluster theory. In this work, we analyze the equations of explicitly correlated coupled-cluster singles and doubles (CCSD-F12) theory and introduce an ordering scheme based on perturbation theory which can be used to characterize and understand the various approximations found in the literature. Numerical results for a test set of 29 molecules support our analysis and give additional insight. In particular, our results help ration…