Search results for "coupling"
showing 10 items of 1862 documents
Role of theN*(1535)resonance and theπ−p→KYamplitudes in the OZI forbiddenπN→ϕNreaction
2008
We study the $\ensuremath{\pi}N\ensuremath{\rightarrow}\ensuremath{\phi}N$ reaction close to the $\ensuremath{\phi}N$ threshold within the chiral unitary approach, by combining the ${\ensuremath{\pi}}^{\ensuremath{-}}p\ensuremath{\rightarrow}{K}^{+}{\ensuremath{\Sigma}}^{\ensuremath{-}},{\ensuremath{\pi}}^{\ensuremath{-}}p\ensuremath{\rightarrow}{K}^{0}{\ensuremath{\Sigma}}^{0}$, and ${\ensuremath{\pi}}^{\ensuremath{-}}p\ensuremath{\rightarrow}{K}^{0}\ensuremath{\Lambda}$ amplitudes with the coupling of \ensuremath{\phi} to the $K$ components of the final states of these reactions via quantum loops. We obtain good agreement with experiment when the dominant ${\ensuremath{\pi}}^{\ensuremath{…
Etherification of Functionalized Phenols with Chloroheteroarenes at Low Palladium Loading: Theoretical Assessment of the Role of Triphosphane Ligands…
2011
The present study highlights the potential of robust tridentate ferrocenylphosphanes with controlled conformation as catalytic auxiliaries in CO bond formation reactions. Air-stable palladium triphosphane systems are efficient for selective heteroaryl ether synthesis by using as little as 0.2 mol% of catalyst. These findings represent an economically attractive and clean etherification of functionalized phenols, electron-rich, electron-poor and para-, meta- or ortho-substituted substrates, with heteroaryl chlorides, including pyridines, hydroxylated pyridine, pyrimidines and thiazole. The etherification tolerates very important functions in various positions, such as cyano, methoxy, amino, …
Hot electron effects in metallic single electron components
1996
Thermalisation of single electron devices is of considerable current interest because of its fundamental and practical consequences. We present experimental evidence of the effect of electrode volume and its shape on thermal equilibration of small metallic islands for single electron tunnelling. Heat transport between the conduction electrons and the lattice in a metal is commonly accepted to obey the ∝Te5-T0/5 law at low electron and lattice temperatures,Te andT0, respectively. We have investigated the power law and found that it obeys the ∝T5 law only for the smallest islands, and in the majority of the cases considered, it rather follows a law ∝Tp, wherep<5. The thermal coupling can be i…
Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states
2017
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., ``laser-dressed'') states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983)] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ${\mathrm{\ensuremath{\Omega}}}_{S}$. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as…
CONSTRUCTION OF METASTABLE STATES IN QUANTUM ELECTRODYNAMICS
2004
In this paper, we construct metastable states of atoms interacting with the quantized radiation field. These states emerge from the excited bound states of the non-interacting system. We prove that these states obey an exponential time-decay law. In detail, we show that their decay is given by an exponential function in time, predicted by Fermi's Golden Rule, plus a small remainder term. The latter is proportional to the (4+β)th power of the coupling constant and decays algebraically in time. As a result, though it is small, it dominates the decay for large times. A central point of the paper is that our remainder term is significantly smaller than the one previously obtained in [1] and as…
More compact invariant manifolds appearing in the non-linear coupling of oscillators
2006
Abstract Near partially elliptic rest points of generic families of vector fields or transformations, many types of normally hyperbolic invariant compact manifolds can appear, diffeomorphic to intersections of quadrics. To cite this article: M. Chaperon et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
Selective Stepwise Suzuki Cross-Coupling Reaction for the Modelling of Photosynthetic Donor−Acceptor Systems
2009
A Suzuki reaction performed as a selective stepwise substitution of two boryl groups on a diarylporphyrin precursor is reported for straightforward construction of a porphyrin trimer, modeling photosynthetic donor-acceptor systems.
Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.
2016
Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP01 and LP1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.
Structure of longitudinal chromomagnetic fields in high energy collisions
2014
We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.
Effect of mixing and spatial dimension on the glass transition
2009
We study the influence of composition changes on the glass transition of binary hard disc and hard sphere mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass transition line. Applied to the binary mixture in the low concentration limits, this new method allows a fast prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard discs strongly resembles the random close packing diagram. Compared to 3D from previous studies, the extension of the glass regime due to mixing is much more pronounced in 2D where plasticization only sets in at larger size disparities. For small size disparitie…