Search results for "cross-linking"

showing 10 items of 91 documents

Infinite coordination polymer networks metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation

2018

Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core dis…

STABILIZATIONSilverCoordination polymerNanoparticleMetal Nanoparticles02 engineering and technologyorganometalliyhdisteet010402 general chemistry01 natural sciencesSilver nanoparticlePolymerizationchemistry.chemical_compoundBipyridinePyridineorganometallic compoundsMoleculePARTICLESCRYSTAL-STRUCTURES4-Aminopyridinepolymeeritta116GELSpolymersgeelitHYBRID MATERIALSta114General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsGELATION0104 chemical sciencesCrystallographyREDUCTIONCross-Linking ReagentschemistryPolymerizationMETALLUMINESCENCEPHASE-TRANSITIONCoordination polymerizationnanohiukkasetnanoparticles0210 nano-technologyRheologySOFT MATTER
researchProduct

Non-cross-linked porcine-based collagen I-III membranes do not require high vascularization rates for their integration within the implantation bed: …

2012

There are conflicting reports concerning the tissue reaction of small animals to porcine-based, non-cross-linked collagen I-III membranes/matrices for use in guided tissue/bone regeneration. The fast degradation of these membranes/matrices combined with transmembrane vascularization within 4 weeks has been observed in rats compared with the slow vascularization and continuous integration observed in mice. The aim of the present study was to analyze the tissue reaction to a porcine-based non-cross-linked collagen I-III membrane in mice. Using a subcutaneous implantation model, the membrane was implanted subcutaneously in mice for up to 60 days. The extent of scaffold vascularization, tissue …

ScaffoldMaterials scienceBarrier membraneSus scrofaBiomedical EngineeringFibroinNeovascularization PhysiologicBiochemistryCollagen Type IBiomaterialsProsthesis ImplantationMicemedicineAnimalsBone regenerationMolecular BiologyPolytetrafluoroethyleneMembranesTissue ScaffoldsGranulation tissueMembranes ArtificialGeneral MedicineImmunohistochemistryTransmembrane proteinRatsmedicine.anatomical_structureMembraneCollagen Type IIICross-Linking ReagentsGiant cellBiophysicsMicroscopy Electron ScanningFemaleFibroinsBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes

2017

With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in…

ScaffoldMaterials scienceSwineScanning electron microscopePolyestersBioengineering02 engineering and technology010402 general chemistryMethacrylate01 natural sciencesCartilage regeneration; Photocrosslinking; Porous scaffolds; αβ-poly(N-2-hydroxyethyl)-DL-aspartamideBiomaterialschemistry.chemical_compoundChondrocytesPorous scaffoldTissue engineeringPolylactic acidPolymer chemistryCopolymerAnimalsPorosityPhotocrosslinkingαβ-poly(N-2-hydroxyethyl)-DL-aspartamideTissue EngineeringTissue Scaffoldstechnology industry and agriculturePhotochemical Processes021001 nanoscience & nanotechnology0104 chemical sciencesCross-Linking ReagentschemistryChemical engineeringCartilage regenerationSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoMechanics of MaterialsCattleLeaching (metallurgy)0210 nano-technologyPorosityMaterials Science and Engineering: C
researchProduct

Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels

2019

Abstract Background Due to unmet need for bone augmentation, our aim was to promote osteogenic differentiation of human adipose stem cells (hASCs) encapsulated in gellan gum (GG) or collagen type I (COL) hydrogels with bioactive glass (experimental glass 2-06 of composition [wt-%]: Na2O 12.1, K2O 14.0, CaO 19.8, P2O5 2.5, B2O3 1.6, SiO2 50.0) extract based osteogenic medium (BaG OM) for bone construct development. GG hydrogels were crosslinked with spermidine (GG-SPD) or BaG extract (GG-BaG). Methods Mechanical properties of cell-free GG-SPD, GG-BaG, and COL hydrogels were tested in osteogenic medium (OM) or BaG OM at 0, 14, and 21 d. Hydrogel embedded hASCs were cultured in OM or BaG OM fo…

SerumAdipose stem cellCompressive StrengthAdipose tissueCell Count02 engineering and technologySpectrum Analysis Raman01 natural sciencesMineralization (biology)Hydrogel Polyethylene Glycol Dimethacrylatelaw.inventionchemistry.chemical_compoundOsteogenesislawOsteogenic differentiationBioactive glassMineralsTissue ScaffoldsbiologyStem CellsPolysaccharides Bacterialbioactive glassCell DifferentiationMiddle Aged021001 nanoscience & nanotechnologyGellan gumCross-Linking ReagentsAdipose TissueMechanics of MaterialsBioactive glassSelf-healing hydrogelsOsteocalcinFemaleStem cellimplantit0210 nano-technologyMaterials scienceCell SurvivalOsteocalcinosteogenic differentiationchemistry.chemical_elementBioengineeringmacromolecular substancesCalciumta3111010402 general chemistryCollagen Type ICollagen type I hydrogelBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biologylasiBiomaterialsCalcification Physiologicbiologinen aktiivisuusgellan gum hydrogelAnimalsHumansta217Ionsgeelitta1182adipose stem cellkantasolutRats0104 chemical sciencesDurapatiteGene Expression RegulationchemistryBiophysicsbiology.proteinGlassGellan gum hydrogelluukudoksetcollagen type I hydrogelBiomarkersMaterials Science and Engineering: C
researchProduct

Consistency of Carbopol 971-P NF gels and influence of soluble and cross-linked PVP.

2002

A study is made of the polymerization process of polyacrylic acid, commercially known as Carbopol® 971 NF, assessing its consistency as a function of the degree of neutralization at pH values from 3 to 12, approximately. Percentage concentrations ranging from 0.1 to 1.4% (w/w) were studied. The gels obtained were non-Newtonian, and pseudoplastic. As concentration and pH rise, the consistency of the gels increase to a maximum, which appears between pH 6 and 8, allowing their use as vehicles in bioadhesive formulations for mucosal application. Over the increasing viscosity interval, functions were obtained to indicate the consistency of the gel as a function of pH and concentration. Since the…

Shear thinningPolyvinylpyrrolidoneViscosityBioadhesivePolyacrylic acidAcrylic ResinsPharmaceutical SciencePovidonechemistry.chemical_compoundViscosityCross-Linking ReagentschemistryChemical engineeringPolymerizationRheologySolubilityConsistency (statistics)Polymer chemistrymedicinePharmaceutic AidsPolyvinylsProtease InhibitorsRheologyGelsmedicine.drugInternational journal of pharmaceutics
researchProduct

Polysaccharide/polyaminoacid composite scaffolds for modified DNA release.

2009

Abstract In this work composite polymeric films or sponges, based on hyaluronic acid (HA) covalently crosslinked with α,β-poly(N-2-hydroxyethyl)(2-aminoethylcarbamate)- d , l -aspartamide (PE), have been prepared and characterized as local gene delivery systems. In particular, HA/PE scaffolds have been loaded with PE/DNA interpolyelectrolyte complexes, employing PE as a macromolecular crosslinker for HA and as a non-viral vector for DNA. In vitro studies showed that HA/PE films and sponges have high compatibility with human dermal fibroblasts and they give a sustained DNA release, whose trend can be easily tailored by varying the crosslinking ratio between HA and PE. Electrophoresis analysi…

StereochemistryMelanoma ExperimentalPharmaceutical ScienceHyaluronoglucosaminidaseElectrophoretic Mobility Shift Assaymacromolecular substancesBiologyGene deliveryTransfectionchemistry.chemical_compoundMiceTissue engineeringHyaluronic acidPolyaminesCOMPOSITE SCAFFOLD SCAFFOLD AMINOACID DNA RELEASE.AnimalsHumansHyaluronic AcidAspartameCells CulturedMolecular StructureGenetic transfertechnology industry and agricultureBiological TransportTransfectionDNAFibroblastsIn vitroKineticsCross-Linking ReagentschemistrySolubilitySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoNucleic Acid ConformationDNAMacromoleculeNuclear chemistryInternational journal of pharmaceutics
researchProduct

Hydrogels for potential colon drug release by thiol-ene conjugate addition of a new inulin derivative.

2008

Inulin was chosen as a starting polymer for biocompatible, pH-sensitive and biodegradable hydrogels. Three INUDVSA-TT hydrogels were obtained by crosslinking inulin derivatives with trimethylolpropane tris(3-mercaptopropionate) under varying conditions. The resulting hydrogels were cell compatible, as demonstrated by MTS and trypan blue exclusion assays acting on Caco-2 cells, and were biodegraded by inulinase and esterase, thus suggesting their use as colonic drug delivery systems. 2-Methoxyestradiol, an anti-cancer drug, was soaked in INUDVSA-TT hydrogels and its in vitro release and apoptotic effect on Caco-2 cells were evaluated.

Succinic AnhydridesPolymers and PlasticsCell SurvivalColonInulinBioengineeringmacromolecular substancesDNA Fragmentationcomplex mixturesBiomaterialschemistry.chemical_compoundDrug Delivery SystemsMaterials ChemistryOrganic chemistryHumansSulfhydryl CompoundsSulfonesHYDROGELS INULIN DRUG TARGETING COLON DELIVERYTrimethylolpropaneParticle SizeEstradioltechnology industry and agricultureInulinHydrogelsCombinatorial chemistry2-MethoxyestradiolMolecular WeightCross-Linking ReagentschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSelf-healing hydrogelsDrug deliveryBisbenzimidazoleLiberationTrypan blueCaco-2 CellsDrug carrierBiotechnologyConjugateMacromolecular bioscience
researchProduct

Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.

1993

We have studied the chromatin structure of the Saccharomyces cerevisiae FBP1 gene, which codes for fructose-1,6-bisphosphatase. A strong, constitutive, DNase I, micrococcal nuclease and S1 nuclease hypersensitive site is present close to the 3′ end of the coding region. In the repressed state, positioned nucleosomes exist around this site, and subtle changes occur in this nucleosomal organization upon derepression. A DNase I hypersensitive region is located within the promoter between positions −540 and −400 and it extends towards the gene in the derepressed state, leading to an alteration of nucleosomal positioning. Psoralen crosslinking of chromatin, which is used for the first time to st…

Transcription GeneticGenes FungalBioengineeringRNA polymerase IISaccharomyces cerevisiaeApplied Microbiology and BiotechnologyBiochemistryFurocoumarinsGene Expression Regulation FungalGenes RegulatorGeneticsNucleosomeCoding regionDNA FungalPromoter Regions GeneticChIA-PETbiologyModels GeneticChromosome MappingMolecular biologyChromatinChromatinFructose-BisphosphataseNucleosomesCross-Linking Reagentsbiology.proteinDNase I hypersensitive siteHypersensitive siteBiotechnologyMicrococcal nucleaseYeast (Chichester, England)
researchProduct

A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding

2010

The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA …

Transcription GeneticUltraviolet RaysSaccharomyces cerevisiaeMutantADNSaccharomyces cerevisiaeBiologyDNA sequencingGenètica molecularchemistry.chemical_compoundGeneticsTrioxsalenDNA FungalOligonucleotide Array Sequence AnalysisProbabilityTopoisomeraseChromosomeDNAGenomicsbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinDNA-Binding ProteinsGenòmicaCross-Linking ReagentschemistryNaked DNAbiology.proteinBiophysicsNucleic Acid ConformationMethods OnlineChromosomes FungalDNA TopoisomerasesDNA
researchProduct

UV-induced cross-linking of proteins to plasmid pBR322 containing 8-azidoadenine 2′-deoxyribonucleotides

1988

Abstract An efficient method of cross-linking DNA to protein is described. The method is based on the incorporation of photoactive 8-azidoadenine 2′-deoxyribonucleotides into DNA. We have found that 8-N 3 dATP is a substrate for E. coli DNA polymerase I and that 8-N 3 dATP can be incorporated into plasmid pBR322 by nick-translation. Subsequently we were able to cross-link a set of different proteins to 8-azido-2′-deoxyadenosine-containing pBR322 by UV irradiation (366 nm). No DNA-protein photocross-linking was observed under the same conditions when the non-photoactive plasmid pBR322 was used.

Ultraviolet RaysDNA polymeraseDNA polymerase IIUltraviolet irradiationBiophysicsAzidoadeninePlasmid pBR322BiochemistryHistonesDeoxyadenine NucleotidesPlasmidStructural BiologyEscherichia coliGeneticsNick translationMolecular BiologyPlasmid preparationDNA clampNick-translationbiologyDNA-protein cross-linkCell BiologyDNA Polymerase IPBR322Cross-Linking ReagentsBiochemistrybiology.proteinDNA polymerase IPlasmidsFEBS Letters
researchProduct