Search results for "crystallization"

showing 10 items of 774 documents

Waveguiding properties of a photonic crystal fiber with a solid core surrounded by four large air holes

2009

The polarization-dependent guiding properties of a hexagonal-lattice photonic crystal fiber with a solid-core surrounded by four large air holes are investigated. The appearance of a polarization dependent cutoff frequency, together with several parameters as the birefringence, the modal effective area, the group velocity dispersion and the polarization dependent loss are analyzed. A collection of fibers with different structural parameters were fabricated and characterized. An effective anti-guide structure from at least 450 nm to 1750 nm, a polarizing fiber with a polarization dependent loss of 16 dB/m at 1550 nm, and an endlessly singlemode polarization-maintaining fiber with group biref…

All-silica fiberMaterials scienceOptical fiberPhysics::OpticsPolarization-maintaining optical fiberSensitivity and SpecificityGraded-index fiberlaw.inventionDouble-clad fiberOpticslawScattering RadiationDispersion-shifted fiberComputer SimulationOptical FibersPhotonsbusiness.industryReproducibility of ResultsEquipment DesignMicrostructured optical fiberModels TheoreticalÒpticaAtomic and Molecular Physics and OpticsEquipment Failure AnalysisComputer-Aided DesignOptoelectronicsCristallsCrystallizationbusinessPhotonic-crystal fiber
researchProduct

Pyroxene-based glass-ceramics as glazes for floor tiles

2005

Abstract Crystallization of a glass with composition in the diopside primary crystallization field in the MgO–CaO–Al 2 O 3 –SiO 2 quaternary system was investigated. Also the action of some additives, nucleants and fluxes, in the pyroxene development was examined. Glasses were prepared by conventional melting of a mixture of raw materials and cooled by pouring in water. Pellets of glass powder specimens were thermally treated at several temperatures up to 1200 °C. The crystallization path was followed by X-ray diffraction powder (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The results proved that, in addition to the effect of B 2 O 3 and TiO 2 in…

Aluminium oxidesDiopsideMaterials scienceScanning electron microscopeMineralogyPyroxeneMicrostructurelaw.inventionCeramic glazeChemical engineeringlawvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCeramicCrystallizationJournal of the European Ceramic Society
researchProduct

Effect of NiO and/or TiO2 mullite formation and microstructure from gels

1998

Polymeric and colloidal gels with a constant molar ratio of (Al+Ni and/or Ti)/Si=3/1 and various (Al/Ni and/or Ti) ratios (up to 21.42 mol% NiO+TiO2) were prepared and used to study the effect of the precursor chemical homogeneity on mullite formation processes and the resulting microstructure. Both kinds of gel precursors were preheated at 750°C for 3 h in order to obtain appropriate gel-derived glasses for further thermal processing. After annealing for several time periods at temperatures between 750 and 1500°C, differences in crystallization pathways were observed. Polymeric gels crystallized Al–Si and NiAl2O4 spinels from the amorphous form at temperatures in the range between 900 and …

Aluminium oxidesMaterials scienceMechanical EngineeringSpinelMineralogyMulliteAluminium silicateengineering.materialMicrostructurelaw.inventionAmorphous solidchemistry.chemical_compoundchemistryChemical engineeringMechanics of MaterialslawengineeringGeneral Materials ScienceCrystallizationSol-gelJournal of Materials Science
researchProduct

Crystallization of the altitude adapted hemoglobin of guinea pig.

2009

Hemoglobin is the versatile oxygen carrier in the blood of vertebrates and a key factor for adaptation to live in high altitudes. Several structural changes are known to account for increased oxygen affinity in hemoglobin of altitude adapted animals such as llama and barheaded goose. Guinea pigs are adapted to live in high altitudes in the Andes and consequently their hemoglobin has an increased oxygen affinity. However, the structural changes responsible for the adaptation of guinea pig hemoglobin are unknown. Here we report the crystallization of guinea pig hemoglobin in the presence of 2.6 M ammonium sulfate and a preliminary analysis of the crystals. Crystals diffract up to a resolution…

Ammonium sulfateAcclimatizationAltitudeGuinea PigsIncreased oxygen affinitychemistry.chemical_elementGeneral MedicineCrystallography X-RayBiochemistryOxygenlaw.inventionPreliminary analysisGuinea pigchemistry.chemical_compoundHemoglobinsAltitudechemistryBiochemistryStructural BiologylawAnimalsHemoglobinCrystallizationCrystallizationProtein and peptide letters
researchProduct

Expression, purification, crystallization and preliminary X-ray analysis of strictosidine glucosidase, an enzyme initiating biosynthetic pathways to …

2005

Abstract Strictosidine β- d -glucosidase, a plant enzyme initiating biosynthetic pathways to about 2000 monoterpenoid indole alkaloids with an extremely large number of various carbon skeletons, has been functionally expressed in Escherichia coli and purified to homogeneity in mg scale. Crystals suitable for X-ray analysis were found by robot-mediated screening. Using the hanging-drop technique, optimum conditions were 0.3 M ammonium sulfate, 0.1 M sodium acetate, pH 4.6 and PEG 4000 (10%) as precipitant buffer. The crystals of strictosidine glucosidase belong to the space group P 42 1 2 with unit cell dimensions of a =157.63, c =103.59 A and diffract X-rays to 2.48-A resolution.

Ammonium sulfateCatharanthusStereochemistryBiophysicsCrystallography X-Raymedicine.disease_causeBiochemistryIndole AlkaloidsAnalytical Chemistrychemistry.chemical_compoundRauvolfia serpentinaPEG ratioEscherichia colimedicineCloning MolecularMolecular BiologyEscherichia colichemistry.chemical_classificationbiologyIndole alkaloidbiology.organism_classificationEnzymeBiochemistrychemistryStrictosidineCrystallizationSodium acetateGlucosidasesBiochimica et Biophysica Acta (BBA) - Proteins and Proteomics
researchProduct

Magnetic and structural study of (Fe1−Co )62 Nb8B30 bulk amorphous alloys

2004

Abstract The electric and magnetic properties of rapidly quenched (Fe 1− x Co x ) 62 Nb 8 B 30 bulk metallic glasses were studied with x =0, 0.33 and 0.50. The Curie temperature in the amorphous state was found to be about 245 °C for the Co-free alloy, 290 °C for x =0.33 and 201 °C for x =0.50, while the crystallization temperature is varying within 15° only around 600 °C. The change in T C correlates with the change in Mossbauer parameters. An interesting flattening effect of annealing on the hysteresis loop was observed which increases with the Co content. The resistivity could not be improved above 152 μΩ cm, which limits the high frequency applications of these alloys.

Amorphous metalMaterials scienceCondensed matter physicsAnnealing (metallurgy)Mechanical EngineeringMetallurgyCondensed Matter PhysicsMagnetic hysteresisAmorphous solidlaw.inventionMagnetic anisotropyMechanics of MaterialsElectrical resistivity and conductivitylawCurie temperatureGeneral Materials ScienceCrystallizationMaterials Science and Engineering: A
researchProduct

Crystallization kinetics of amorphous SiC films: Influence of substrate

2005

Abstract The crystallization kinetics of amorphous silicon carbide films was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films were deposited by radio frequency (r.f.) magnetron sputtering on glassy carbon and single crystalline silicon substrates, respectively. TEM micrographs and XRD patterns show the formation of nano-crystalline β-SiC with crystallite sizes in the order of 50 nm during annealing at temperatures between 1200 and 1600 °C. A modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) formalism was used to describe the isothermal transformation of amorphous SiC into β-SiC as an interface controlled, three-dimensional growth processes fr…

Amorphous siliconMaterials scienceSiliconGeneral Physics and Astronomychemistry.chemical_elementGlassy carbonlaw.inventionchemistry.chemical_compoundsilicon carbidelawcrystallization kineticsCrystalline siliconCrystallizationsputter depositionSurfaces and InterfacesGeneral ChemistrySputter depositionCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidamorphous filmsCrystallographychemistryChemical engineering[ CHIM.MATE ] Chemical Sciences/Material chemistryCrystalliteApplied Surface Science
researchProduct

Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells

2011

A three-dimensional photonic crystal intermediate reflector for enhanced light trapping in tandem solar cells is presented. The intermediate reflector consists of a transparent and conductive ZnO:Al inverted opal sandwiched in between the top amorphous silicon and bottom microcrystalline silicon cell.

Amorphous siliconPhotonsSiliconMaterials scienceLightTandembusiness.industryMechanical EngineeringTrappingchemistry.chemical_compoundchemistryMechanics of MaterialsSolar EnergyOptoelectronicsGeneral Materials ScienceZinc OxideCrystallizationbusinessAluminumPhotonic crystal
researchProduct

Pressure-induced magnetic switching and linkage isomerism in K0.4Fe4[Cr(CN)6]2.8 x 16 H2O: X-ray absorption and magnetic circular dichroism studies.

2008

The effect of applied pressure on the magnetic properties of the Prussian blue analogue K0.4Fe4[Cr(CN)6]2.8 x 16 H2O (1) has been analyzed by dc and ac magnetic susceptibility measurements. Under ambient conditions, 1 orders ferromagnetically at a critical temperature (T(C)) of 18.5 K. Under application of pressure in the 0-1200 MPa range, the magnetization of the material decreases and its critical temperature shifts to lower temperatures, reaching T(C) = 7.5 K at 1200 MPa. Pressure-dependent Raman and Mossbauer spectroscopy measurements show that this striking behavior is due to the isomerization of some Cr(III)-C[triple bond]N-Fe(II) linkages to the Cr(III)-N[triple bond]C-Fe(II) form. A…

Analytical chemistryBiochemistryCatalysisMagnetizationsymbols.namesakeMagneticsColloid and Surface ChemistryIsomerismX-Ray DiffractionChromium CompoundsMössbauer spectroscopyTavernePressureLinkage isomerismCyanidesMagnetic circular dichroismChemistrySpectrum AnalysisX-RaysTemperatureWaterGeneral ChemistryMagnetic susceptibilityX-ray magnetic circular dichroismsymbolsDiamagnetismRaman spectroscopyCrystallizationIron CompoundsJournal of the American Chemical Society
researchProduct

X-ray analysis on the nanogram to microgram scale using porous complexes

2012

X-ray single-crystal diffraction (SCD) analysis has the intrinsic limitation that the target molecules must be obtained as single crystals. Here we report a protocol for SCD analysis that does not require the crystallization of the sample. In our method, tiny crystals of porous complexes are soaked in a solution of the target, such that the complexes can absorb the target molecules. Crystallographic analysis clearly determines the absorbed guest structures along with the host frameworks. Because the SCD analysis is carried out on only one tiny crystal of the complex, the required sample mass is of the nanogram–microgram order. We demonstrate that as little as about 80 nanograms of a sample …

Analytical chemistryCrystallography X-RayMass spectrometryHigh-performance liquid chromatographyAbsorptionlaw.inventionCrystallawAnimalsNanotechnologyMoleculeCrystallizationta116Biological ProductsMultidisciplinaryChemistryMicrochemistryAnalytic Sample Preparation MethodsPoriferaCharacterization (materials science)AlkynesFatty AlcoholsAbsorption (chemistry)CrystallizationPorous mediumPorosityNature
researchProduct