Search results for "crystals"
showing 10 items of 350 documents
Charge carrier transport mechanisms in CdZnTe detectors grown by the vertical Bridgman technique
2016
In this work, we report on the results of electrical characterization of CdZnTe (CZT) detectors, with gold electroless contacts, grown by the boron oxide encapsulated vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with different thicknesses (1 and 2.5 mm), have the same electrode layout: the anode is a central electrode (2 x 2 mm(2)) surrounded by a guard ring electrode. The cathode is a planar electrode covering the detector surface (4.1 x 4.1 mm(2)). Current-voltage (I-V) characteristics were measured at different temperatures in order to study the charge transport and the electrical properties. These detectors were compared with the trav…
Lattice Dynamics Study of HgGa2Se4 at High Pressures
2013
We report on Raman scattering measurements in mercury digallium selenide (HgGa2Se4) up to 25 GPa. We also performed, for the low-pressure defect-chalcopyrite structure, lattice-dynamics ab initio calculations at high pressures which agree with experiments. Measurements evidence that the semiconductor HgGa2Se4 exhibits a pressure-induced phase transition above 19 GPa to a previously undetected structure. This transition is followed by a transformation to a Raman-inactive phase above 23.4 GPa. On downstroke from 25 GPa until 2.5 GPa, a broad Raman spectrum was observed, which has been attributed to a fourth phase, and whose pressure dependence was followed during a second upstroke. Candidate …
Hydrogen-bonded liquid crystals with broad-range blue phases
2019
We report a modular supramolecular approach for the investigation of chirality induction in hydrogen-bonded liquid crystals. An exceptionally broad blue phase with a temperature range of 25 °C was found, which enabled its structural investigation by solid state 19F-NMR studies and allowed us to report order parameters of the blue phase I for the first time.
2015
Abstract. This paper presents results from the "INUIT-JFJ/CLACE 2013" field campaign at the high alpine research station Jungfraujoch in January/February 2013. The chemical composition of ice particle residuals (IPR) in a size diameter range of 200–900 nm was measured in orographic, convective and non-convective clouds with a single particle mass spectrometer (ALABAMA) under ambient conditions characterized by temperatures between −28 and −4 °C and wind speed from 0.1 to 21 km h−1. Additionally, background aerosol particles in cloud free air were investigated. The IPR were sampled from mixed-phase clouds with two inlets which selectively extract small ice crystals in-cloud, namely the Count…
Investigation of the Electromagnetic Radiation Emitted by Sub-GeV Electrons in a Bent Crystal.
2015
The radiation emitted by 855 MeV electrons via planar channeling and volume reflection in a $30.5\text{\ensuremath{-}}\ensuremath{\mu}\mathrm{m}$-thick bent Si crystal has been investigated at the MAMI (Mainzer Mikrotron) accelerator. The spectral intensity was much more intense than for an equivalent amorphous material, and peaked in the MeV range in the case of channeling radiation. Differently from a straight crystal, also for an incidence angle larger than the Lindhard angle, the spectral intensity remains nearly as high as for channeling. This is due to volume reflection, for which the intensity remains high at a large incidence angle over the whole angular acceptance, which is equal t…
Towards Si-based photonic circuits: Integrating photonic crystals in silicon-on-insulator platforms
2007
In the context of Si-based photonics, we report on a strategy to integrate two optical components, a 3D photonic crystal light emitter and a waveguide, in a silicon-on-insulator patterned substrate. Self-assembled colloidal photonic crystals are produced with high crystalline quality and spatial selectivity. Plane wave expansion and finite-difference time-domain have been used to find suitable configurations for positioning emitters and waveguides. The first steps toward the realisation of these configurations are presented.
Light absorption in silicon quantum dots embedded in silica
2009
The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient a…
Cellulose Nanocrystals from Lignocellulosic Raw Materials
2017
Cellulose nanocrystals (CNCs) are unique, renewable top-down nano particles from which coatings with improved gas barrier properties and new functionalities can be prepared. In this paper, the potential for obtaining such high performing nanocrystals from low-cost lignocellulosic by-products or raw materials is proved by a comparison study on CNCs obtained both from cotton linters and kraft pulp, by means of the ammonium persulfate (APS) process. Morphological and chemical characterization of the nanocrystals obtained, as well as the main functional properties of the poly(ethylene terephthalate) coated films, showed quite similar characteristics and performances of CNCs obtained from pure c…