Search results for "cut"
showing 10 items of 5063 documents
Drone arc routing problems
2018
[EN] In this article, we present some drone arc routing problems (Drone ARPs) and study their relation with well-known postman ARPs. Applications for Drone ARPs include traffic monitoring by flying over roadways, infrastructure inspection such as by flying along power transmission lines, pipelines or fences, and surveillance along linear features such as coastlines or territorial borders. Unlike the postmen in traditional ARPs, drones can travel directly between any two points in the plane without following the edges of the network. As a consequence, a drone route may service only part of an edge, with multiple routes being used to cover the entire edge. Thus the Drone ARPs are continuous o…
A New Branch-and-Cut Algorithm for the Generalized Directed Rural Postman Problem
2016
The generalized directed rural postman problem, also known as the close-enough arc routing problem, is an arc routing problem with some interesting real-life applications, such as routing for meter reading. In this article we introduce two new formulations for this problem as well as various families of new valid inequalities that are used to design and implement a branch-and-cut algorithm. The computational results obtained on test bed instances from the literature show that this algorithm outperforms the existing exact methods
A more efficient cutting planes approach for the green vehicle routing problem with capacitated alternative fuel stations
2021
AbstractThe Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations assumes that, at each station, the number of vehicles simultaneously refueling cannot exceed the number of available pumps. The state-of-the-art solution method, based on the generation of all feasible non-dominated paths, performs well only with up to 2 pumps. In fact, it needs cloning the paths between every pair of pumps. To overcome this issue, in this paper, we propose new path-based MILP models without cloning paths, for both the scenario with private stations (i.e., owned by the fleet manager) and that with public stations. Then, a more efficient cutting plane approach is designed for addressing both…
Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows
2019
The split delivery vehicle routing problem with time windows (SDVRPTW) is a notoriously hard combinatorial optimization problem. First, it is hard to find a useful compact mixed-integer programming (MIP) formulation for the SDVRPTW. Standard modeling approaches either suffer from inherent symmetries (mixed-integer programs with a vehicle index) or cannot exactly capture all aspects of feasibility. Because of the possibility to visit customers more than once, the standard mechanisms to propagate load and time along the routes fail. Second, the lack of useful formulations has rendered any direct MIP-based approach impossible. Up to now, the most effective exact algorithms for the SDVRPTW hav…
Solving a large cutting problem in the glass manufacturing industry
2020
Abstract The glass cutting problem proposed by Saint Gobain for the 2018 ROADEF challenge includes some specific constraints that prevent the direct application of procedures developed for the standard cutting problem. On the one hand, the sheets to be cut have defects that make them unique and they must be used in a given order. On the other hand, pieces are grouped in stacks and the pieces in each stack must be cut in order. There are also some additional characteristics due to the technology being used, especially the requirement for a three-stage guillotine cutting process. Taking into account the sequencing constraints on sheets and pieces, we have developed a beam search algorithm, us…
Improved polyhedral descriptions and exact procedures for a broad class of uncapacitated p-hub median problems
2019
Abstract This work focuses on a broad class of uncapacitated p-hub median problems that includes non-stop services and setup costs for the network structures. In order to capture both the single and the multiple allocation patterns as well as any intermediate case of interest, we consider the so-called r-allocation pattern with r denoting the maximum number of hubs a terminal can be allocated to. We start by revisiting an optimization model recently proposed for the problem. For that model, we introduce several families of valid inequalities as well as optimality cuts. Moreover, we consider a relaxation of the model that contains several sets of set packing constraints. This motivates a pol…
The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints
2019
In classical routing problems, each customer is visited exactly once. By contrast, when allowing split deliveries, customers may be served through multiple visits. This potentially results in substantial savings in travel costs. Even if split deliveries are beneficial to the transport company, several visits may be undesirable on the customer side: At each visit the customer has to interrupt his primary activities and handle the goods receipt. The contribution of the present paper consists in a thorough analysis of the possibilities and limitations of split delivery distribution strategies. To this end, we investigate two different types of measures for limiting customer inconvenience (a m…
Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut
2018
This work addresses integrated line planning for intercity bus lines, which differs in several respects from line planning in public transit. Passengers in intercity transportation decide on specific timetabled services to get to their destination. This is a contrast to an urban setting with higher frequencies, where it is generally sufficient to choose a line. Furthermore, intercity bus transportation in deregulated markets is usually characterized by fierce competition within and across modes. Customers are highly sensitive to price, time of day, duration, convenient access to stations, and service quality. Hence, bus line operators need to decide thoroughly on every single timetabled se…
Branch-and-price-and-cut for a service network design and hub location problem
2015
In the context of combined road-rail freight transport, we study the integrated tactical planning of hub locations and the design of a frequency service network. We consider a number of real-world constraints such as multiple transshipments of requests at hubs, transport time limits for requests, request splitting, and outsourcing possibilities. To our knowledge, the combination of problem features we deal with has not been described before. We present a path-based model and solve it with a branch-and-price-and-cut algorithm. Computational experiments show that large realistic instances from a major German rail freight company can be solved close to optimality within one hour on a standard …
The periodic rural postman problem with irregular services on mixed graphs
2019
Abstract In this paper, we deal with an extension of the rural postman problem in which some links of a mixed graph must be traversed a given number of times over a time horizon. These links represent entities that must be serviced a specified number of times in some subsets of days (or periods) of the time horizon. The aim is to design a set of minimum-cost tours, one for each day/period of the time horizon, that satisfy the service requirements. We refer to this problem as the periodic rural postman problem with irregular services (PRPP–IS). Some practical applications of the problem can be found in road maintenance operations and road network surveillance, for example. In order to solve …