Search results for "data structure"
showing 10 items of 441 documents
Machine-Independent Characterizations and Complete Problems for Deterministic Linear Time
2002
This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Random Access Machine which uses only numbers of linear value during its computations. The algebraic characterizations are in terms of recursion schemes that define unary functions. One of these schemes defines several functions simultaneously, while the other one defines only one function. From the algebraic characterizations, we derive two complete problems for DLIN under new, very strict, and mac…
Bounds for minimum feedback vertex sets in distance graphs and circulant graphs
2008
Graphs and Algorithms
On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching
2010
Given a string s, the Parikh vector of s, denoted p(s), counts the multiplicity of each character in s. Searching for a match of Parikh vector q (a “jumbled string”) in the text s requires to find a substring t of s with p(t) = q. The corresponding decision problem is to verify whether at least one such match exists. So, for example for the alphabet Σ = {a, b, c}, the string s = abaccbabaaa has Parikh vector p(s) = (6,3,2), and the Parikh vector q = (2,1,1) appears once in s in position (1,4). Like its more precise counterpart, the renown Exact String Matching, Jumbled Pattern Matching has ubiquitous applications, e.g., string matching with a dyslectic word processor, table rearrangements, …
Analysis of properties of recombination operators proposed for the node-depth encoding
2011
The node-depth encoding is a representation for evolutionary algorithms applied to tree problems. Its represents trees by storing the nodes and their depth in a proper ordered list. The original formulation of the node-depth encoding has only mutation operators as the search mechanism. Although it is computationally efficient, the exclusive use of mutation restricts the exploration of the search space and the algorithm convergence. Then, this work proposes two specific recombination operators to improve the convergence of the algorithm using the node-depth encoding representation. These operators are based on recombination operators for permutation representations. Analysis of the proposed …
A note on Sturmian words
2012
International audience; We describe an algorithm which, given a factor of a Sturmian word, computes the next factor of the same length in the lexicographic order in linear time. It is based on a combinatorial property of Sturmian words which is related with the Burrows-Wheeler transformation.
An Exact Algorithm for the Quadratic Assignment Problem on a Tree
1989
The Tree QAP is a special case of the Quadratic Assignment Problem (QAP) where the nonzero flows form a tree. No condition is required for the distance matrix. This problem is NP-complete and is also a generalization of the Traveling Salesman Problem. In this paper, we present a branch-and-bound algorithm for the exact solution of the Tree QAP based on an integer programming formulation of the problem. The bounds are computed using a Lagrangian relaxation of this formulation. To solve the relaxed problem, we present a Dynamic Programming algorithm which is polynomially bounded. The obtained lower bound is very sharp and equals the optimum in many cases. This fact allows us to employ a redu…
A simple algorithm for generating neuronal dendritic trees
1990
Abstract A simple, efficient algorithm is presented for generating the codewords of all neuronal dendritic trees with a given number of terminal nodes. Furthermore, a procedure is developed for deciding if different codewords correspond to topologically equivalent trees.
On the longest common factor problem
2008
The Longest Common Factor (LCF) of a set of strings is a well studied problem having a wide range of applications in Bioinformatics: from microarrays to DNA sequences analysis. This problem has been solved by Hui (2000) who uses a famous constant-time solution to the Lowest Common Ancestor (LCA) problem in trees coupled with use of suffix trees. A data structure for the LCA problem, although linear in space and construction time, introduces a multiplicative constant in both space and time that reduces the range of applications in many biological applications. In this article we present a new method for solving the LCF problem using the suffix tree structure with an auxiliary array that take…
On the Construction of Classes of Suffix Trees for Square Matrices: Algorithms and Applications
1996
AbstractWe provide a uniform framework for the study of index data structures for a two-dimensional matrixTEXT[1:n, 1:n] whose entries are drawn from an ordered alphabetΣ. An index forTEXTcan be informally seen as the two-dimensional analog of the suffix tree for a string. It allows on-line searches and statistics to be performed onTEXTby representing compactly theΘ(n3) square submatrices ofTEXTin optimalO(n2) space. We identify 4n−1families of indices forTEXT, each containing ∏ni=1(2i−1)! isomorphic data structures. We also develop techniques leading to a single algorithm that efficiently builds any index in any family inO(n2logn) time andO(n2) space. Such an algorithm improves in various …
Equations on trees
1996
We introduce the notion of equation on trees, generalizing the corresponding notion for words, and we develop the first steps of a theory of tree equations. The main result of the paper states that, if a pair of trees is the solution of a tree equation with two indeterminates, then the two trees are both powers of the same tree. As an application, we show that a tree can be expressed in a unique way as a power of a primitive tree. This extends a basic result of combinatorics on words to trees. Some open problems are finally proposed.