Search results for "ddc:510"
showing 6 items of 16 documents
A parts-per-billion measurement of the antiproton magnetic moment
2017
The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.0…
An Itô Formula for rough partial differential equations and some applications
2020
AbstractWe investigate existence, uniqueness and regularity for solutions of rough parabolic equations of the form $\partial _{t}u-A_{t}u-f=(\dot X_{t}(x) \cdot \nabla + \dot Y_{t}(x))u$ ∂ t u − A t u − f = ( X ̇ t ( x ) ⋅ ∇ + Y ̇ t ( x ) ) u on $[0,T]\times \mathbb {R}^{d}.$ [ 0 , T ] × ℝ d . To do so, we introduce a concept of “differential rough driver”, which comes with a counterpart of the usual controlled paths spaces in rough paths theory, built on the Sobolev spaces Wk,p. We also define a natural notion of geometricity in this context, and show how it relates to a product formula for controlled paths. In the case of transport noise (i.e. when Y = 0), we use this framework to prove a…
Automorphisms of $mathbb{A}^{1}$-fibered affine surfaces
2011
We develop technics of birational geometry to study automorphisms of affine surfaces admitting many distinct rational fibrations, with a particular focus on the interactions between automorphisms and these fibrations. In particular, we associate to each surface S of this type a graph encoding equivalence classes of rational fibrations from which it is possible to decide for instance if the automorphism group of S is generated by automorphisms preserving these fibrations.
Projective metrics and mixing properties on towers
2001
Algebraic (2, 2)-transformation groups
2009
This paper contains the more significant part of the article with the same title that will appear in the Volume 12 of Journal of Group Theory (2009). In this paper we determine all algebraic transformation groups $G$, defined over an algebraically closed field $\sf k$, which operate transitively, but not primitively, on a variety $\Omega$, provided the following conditions are fulfilled. We ask that the (non-effective) action of $G$ on the variety of blocks is sharply 2-transitive, as well as the action on a block $\Delta$ of the normalizer $G_\Delta$. Also we require sharp transitivity on pairs $(X,Y)$ of independent points of $\Omega$, i.e. points contained in different blocks.