Search results for "decidability"
showing 6 items of 46 documents
On Finite Satisfiability of Two-Variable First-Order Logic with Equivalence Relations
2009
We show that every finitely satisfiable two-variable first-order formula with two equivalence relations has a model of size at most triply exponential with respect to its length. Thus the finite satisfiability problem for two-variable logic over the class of structures with two equivalence relations is decidable in nondeterministic triply exponential time. We also show that replacing one of the equivalence relations in the considered class of structures by a relation which is only required to be transitive leads to undecidability. This sharpens the earlier result that two-variable logic is undecidable over the class of structures with two transitive relations.
Sur les Codes ZigZag et Leur Décidabilité
1990
AbstractThis paper deals with zigzag factorizations and zigzag codes. The language of “zigzag” over a regular language is represented by constructing a special family of two-way automata. Decidability of zigzag codes, previously shown for the finite languages, is proved here for all regular languages by the analysis of the set of “crossing sequences” produced by a two-way automation in the family. We also obtain that it is decidable whether or not a two-way automation of a certain type is non-ambiguous.RésuméDans ce papier on reprend les notions de factorisation zigzag et de code zigzag. On construit pour tout langage rationnel, une famille d'automates bilatéres lesquels reconnaissent les m…
A characterization of regular circular languages generated by marked splicing systems
2009
AbstractSplicing systems are generative devices of formal languages, introduced by Head in 1987 to model biological phenomena on linear and circular DNA molecules. A splicing system is defined by giving an initial set I and a set R of rules. Some unanswered questions are related to the computational power of circular splicing systems. In particular, a still open question is to find a characterization of circular languages generated by finite circular splicing systems (i.e., circular splicing systems with both I and R finite sets). In this paper we introduce a special class of the latter systems named marked systems. We prove that a marked system S generates a regular circular language if an…
Algorithmic Analysis of Programs with Well Quasi-ordered Domains
2000
AbstractOver the past few years increasing research effort has been directed towards the automatic verification of infinite-state systems. This paper is concerned with identifying general mathematical structures which can serve as sufficient conditions for achieving decidability. We present decidability results for a class of systems (called well-structured systems) which consist of a finite control part operating on an infinite data domain. The results assume that the data domain is equipped with a preorder which is a well quasi-ordering, such that the transition relation is “monotonic” (a simulation) with respect to the preorder. We show that the following properties are decidable for wel…
Adding Transitivity and Counting to the Fluted Fragment
2023
We study the impact of adding both counting quantifiers and a single transitive relation to the fluted fragment - a fragment of first-order logic originating in the work of W.V.O. Quine. The resulting formalism can be viewed as a multi-variable, non-guarded extension of certain systems of description logic featuring number restrictions and transitive roles, but lacking role-inverses. We establish the finite model property for our logic, and show that the satisfiability problem for its k-variable sub-fragment is in (k+1)-NExpTime. We also derive ExpSpace-hardness of the satisfiability problem for the two-variable, fluted fragment with one transitive relation (but without counting quantifiers…
The Abelian Kernel of an Inverse Semigroup
2020
The problem of computing the abelian kernel of a finite semigroup was first solved by Delgado describing an algorithm that decides whether a given element of a finite semigroup S belongs to the abelian kernel. Steinberg extended the result for any variety of abelian groups with decidable membership. In this paper, we used a completely different approach to complete these results by giving an exact description of the abelian kernel of an inverse semigroup. An abelian group that gives this abelian kernel was also constructed.