Search results for "decoerenza"
showing 4 items of 4 documents
Stimulated Raman adiabatic passage in a $\Lambda$-system in the presence of quantum noise
2011
We exploit a microscopically derived master equation for the study of STIRAP in the presence of decay from the auxiliary level toward the initial and final state, and compare our results with the predictions obtained from a phenomenological model previously used [P. A. Ivanov, N. V. Vitanov, and K. Bergmann, Phys. Rev. A 72, 053412 (2005)]. It is shown that our approach predicts a much higher efficiency. The effects of temperature are also taken into account, proving that in b-STIRAP thermal pumping can increase the efficiency of the population transfer.
Robust stationary entanglement of two coupled qubits in independent environments
2009
The dissipative dynamics of two interacting qubits coupled to independent reservoirs at nonzero temperatures is investigated, paying special attention to the entanglement evolution. The counter-rotating terms in the qubit-qubit interaction give rise to stationary entanglement, traceable back to the ground state structure. The robustness of this entanglement against thermal noise is thoroughly analyzed, establishing that it can be detected at reasonable experimental temperatures. Some effects linked to a possible reservoir asymmetry are brought to light.
Dissipative effects on a scheme of generation of a W state in an array of coupled Josephson junctions
2011
The dynamics of an open quantum system, consisting of three superconducting qubits interacting with independent reservoirs, is investigated to elucidate the effects of the environment on a unitary generation scheme of W states (Migliore R et al 2006 Phys. Rev. B 74 104503). To this end a microscopic master equation is constructed and its exact resolution predicts the generation of a Werner-like state instead of the W state. A comparison between our model and a more intuitive phenomenological model is also considered, in order to find the limits of the latter approach in the case of structured reservoirs.
Dissipative dynamics of two coupled qubits: a short review of some recent results
2011
In this paper, we review some results concerning the dissipative dynamics of two coupled qubits interacting with independent reservoirs. In particular, we focus on the role of counter-rotating terms in the qubit-qubit coupling, showing that their presence is the origin of stationary entanglement, which also turns out to be robust with respect to temperature. We also discuss the performances of different non-Markovian approaches in the description of the qubit-qubit dynamics, by considering a simplified exactly solvable Hamiltonian model.