Search results for "decomposition"
showing 10 items of 766 documents
Quasianalytic Denjoy-Carleman classes and o-minimality
2003
We show that the expansion of the real field generated by the functions of a quasianalytic Denjoy-Carleman class is model complete and o-minimal, provided that the class satisfies certain closure conditions. Some of these structures do not admit analytic cell decomposition, and they show that there is no largest o-minimal expansion of the real field.
Class Decomposition for Gastric Cancer Detection from Breath
2021
Lifting paths on quotient spaces
2009
Abstract Let X be a compactum and G an upper semi-continuous decomposition of X such that each element of G is the continuous image of an ordered compactum. If the quotient space X / G is the continuous image of an ordered compactum, under what conditions is X also the continuous image of an ordered compactum? Examples around the (non-metric) Hahn–Mazurkiewicz Theorem show that one must place severe conditions on G if one wishes to obtain positive results. We prove that the compactum X is the image of an ordered compactum when each g ∈ G has 0-dimensional boundary. We also consider the case when G has only countably many non-degenerate elements. These results extend earlier work of the firs…
Semisimple Lie Algebras
1989
Let F be the field of real or complex numbers. A Lie algebra is a vector space g over F with a Lie product (or commutator) [·,·]: g × g → g such that $$x \mapsto \left[ {x,y} \right]\;is\;linear\;for\;any\;y \in g,$$ (1) $$\left[ {x,y} \right] =- \left[ {y,x} \right],$$ (2) $$\left[ {x,\left[ {y,z} \right]} \right] + \left[ {y,\left[ {z,x} \right]} \right] + \left[ {z,\left[ {x,y} \right]} \right] = 0.$$ (3) The last condition is called the Jacobi identity. From (1) and (2) it follows that also y ↦ [x,y] is linear for any x ∈ g. In this chapter we shall consider only fini te-dimensional Lie algebras. In any vector space g one can always define a trivial Lie product [x,y] = 0. A Lie algebra …
K4-free Graphs as a Free Algebra
2017
International audience; Graphs of treewidth at most two are the ones excluding the clique with four vertices (K4) as a minor, or equivalently, the graphs whose biconnected components are series-parallel. We turn those graphs into a finitely presented free algebra, answering positively a question by Courcelle and Engelfriet, in the case of treewidth two. First we propose a syntax for denoting these graphs: in addition to parallel composition and series composition, it suffices to consider the neutral elements of those operations and a unary transpose operation. Then we give a finite equational presentation and we prove it complete: two terms from the syntax are congruent if and only if they …
A Lebesgue-type decomposition for non-positive sesquilinear forms
2018
A Lebesgue-type decomposition of a (non necessarily non-negative) sesquilinear form with respect to a non-negative one is studied. This decomposition consists of a sum of three parts: two are dominated by an absolutely continuous form and a singular non-negative one, respectively, and the latter is majorized by the product of an absolutely continuous and a singular non-negative forms. The Lebesgue decomposition of a complex measure is given as application.
Evaluation of sewage sludge-based compost by FT-IR spectroscopy
2006
The aerobic batch composting fermentations of sewage sludge with wood chips and maturity compost as co-composting additives were carried out in an open type lab-scale reactor. Fourier transform infrared spectroscopy (FT-IR) spectroscopy was used to monitor the composting process, evaluate the degradation rate and thus determine the maturity. Although the composition of the input mixture strongly affects the shape of the infrared (IR) spectra, typical bands of components can be selected and used to follow the composting process. The appearance, shape and intensity of the nitrate band at 1384 cm 1 was well pronounced and evident for a sewage sludgebased compost maturity. An increase of the pe…
ChemInform Abstract: Evidence for the Formation of 1,3- and 1,4-Dehydrobenzenes in the Thermal Decomposition of Diaryliodonium-carboxylates.
1987
Abstract Abstract: Generation of m- and p-benzynes in decomposition of diaryliodonium- 3- and 4-carboxylates is demonstrated by three-phase method.
MultivariateApart: Generalized partial fractions
2021
We present a package to perform partial fraction decompositions of multivariate rational functions. The algorithm allows to systematically avoid spurious denominator factors and is capable of producing unique results also when being applied to terms of a sum separately. The package is designed to work in Mathematica, but also provides interfaces to the Form and Singular computer algebra systems.
Cholesky decomposition techniques in electronic structure theory
2011
We review recently developed methods to efficiently utilize the Cholesky decomposition technique in electronic structure calculations. The review starts with a brief introduction to the basics of the Cholesky decomposition technique. Subsequently, examples of applications of the technique to ab inito procedures are presented. The technique is demonstrated to be a special type of a resolution-of-identity or density-fitting scheme. This is followed by explicit examples of the Cholesky techniques used in orbital localization, computation of the exchange contribution to the Fock matrix, in MP2, gradient calculations, and so-called method specific Cholesky decomposition. Subsequently, examples o…