Search results for "deep learning"

showing 10 items of 337 documents

Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals

2020

Depression is a mental health disorder characterised by persistently depressed mood or loss of interest in activities resulting impairment in daily life significantly. Electroencephalography (EEG) can assist with the accurate diagnosis of depression. In this paper, we present two different hybrid deep learning models for classification and assessment of patient suffering with depression. We have combined convolutional neural network with Gated recurrent units (RGUs), thus the proposed network is shallow and much smaller in size in comparison to its counter LSTM network. In addition to this, proposed approach is less sensitive to parameter settings. Extensive experiments on EEG dataset shows…

020205 medical informaticsmedicine.diagnostic_testComputer sciencebusiness.industryDeep learningPattern recognition02 engineering and technologyElectroencephalographyConvolutional neural network0202 electrical engineering electronic engineering information engineeringmedicineAnxiety020201 artificial intelligence & image processingArtificial intelligencemedicine.symptomF1 scorebusinessDepressed moodDepression (differential diagnoses)
researchProduct

Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks

2018

Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is propos…

0209 industrial biotechnologyComputer sciencebusiness.industryPowertrainStatorDeep learningReliability (computer networking)020208 electrical & electronic engineeringControl engineeringHardware_PERFORMANCEANDRELIABILITY02 engineering and technologyFault (power engineering)Convolutional neural networklaw.inventionPower (physics)020901 industrial engineering & automationlaw0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessInduction motor2018 XIII International Conference on Electrical Machines (ICEM)
researchProduct

Kick Detection and Influx Size Estimation during Offshore Drilling Operations using Deep Learning

2019

An uncontrolled or unobserved influx or kick during drilling has the potential to induce a well blowout, one of the most harmful incidences during drilling both in regards to economic and environmental cost. Since kicks during drilling are serious risks, it is important to improve kick and loss detection performance and capabilities and to develop automatic flux detection methodology. There are clear patterns during a influx incident. However, due to complex processes and sparse instrumentation it is difficult to predict the behaviour of kicks or losses based on sensor data combined with physical models alone. Emerging technologies within Deep Learning are however quite adapt at picking up …

021110 strategic defence & security studiesgeographygeography.geographical_feature_categoryArtificial neural networkComputer sciencebusiness.industryDeep learning0211 other engineering and technologiesDrilling0102 computer and information sciences02 engineering and technology01 natural sciencesWellboreVDP::Teknologi: 500Drilling machines010201 computation theory & mathematicsInstrumentation (computer programming)Artificial intelligencebusinessOffshore drillingMarine engineeringWater well2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
researchProduct

ES1D: A Deep Network for EEG-Based Subject Identification

2017

Security systems are starting to meet new technologies and new machine learning techniques, and a variety of methods to identify individuals from physiological signals have been developed. In this paper, we present ESID, a deep learning approach to identify subjects from electroencephalogram (EEG) signals captured by using a low cost device. The system consists of a Convolutional Neural Network (CNN), which is fed with the power spectral density of different EEG recordings belonging to different individuals. The network is trained for a period of one million iterations, in order to learn features related to local patterns in the spectral domain of the original signal. The performance of the…

021110 strategic defence & security studiesmedicine.diagnostic_testbusiness.industryComputer scienceDeep learningFeature extractionSIGNAL (programming language)0211 other engineering and technologiesSpectral densityPattern recognition02 engineering and technologyElectroencephalographyConvolutional neural networkConvolutionIdentification (information)0202 electrical engineering electronic engineering information engineeringmedicine020201 artificial intelligence & image processingArtificial intelligencebusiness2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)
researchProduct

Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms

2020

Author(s): Christopher, Mark; Nakahara, Kenichi; Bowd, Christopher; Proudfoot, James A; Belghith, Akram; Goldbaum, Michael H; Rezapour, Jasmin; Weinreb, Robert N; Fazio, Massimo A; Girkin, Christopher A; Liebmann, Jeffrey M; De Moraes, Gustavo; Murata, Hiroshi; Tokumo, Kana; Shibata, Naoto; Fujino, Yuri; Matsuura, Masato; Kiuchi, Yoshiaki; Tanito, Masaki; Asaoka, Ryo; Zangwill, Linda M | Abstract: PurposeTo compare performance of independently developed deep learning algorithms for detecting glaucoma from fundus photographs and to evaluate strategies for incorporating new data into models.MethodsTwo fundus photograph datasets from the Diagnostic Innovations in Glaucoma Study/African Descent…

0301 basic medicineAginggenetic structuresFundus OculiAfrican descentPopulationBiomedical EngineeringGlaucomaPrimary careNeurodegenerativeoptic disc03 medical and health sciences0302 clinical medicineDeep LearningOpthalmology and OptometryArtificial IntelligencemedicineHumanseducationMild diseaseeducation.field_of_studyReceiver operating characteristicbusiness.industrySpecial IssueDeep learningimagingartificial intelligencemedicine.diseaseeye diseasesOphthalmology030104 developmental biologyglaucomamachine learning030221 ophthalmology & optometryPopulation studyArtificial intelligencebusinessPsychologyAlgorithmAlgorithmsTranslational Vision Science & Technology
researchProduct

Deep learning in next-generation sequencing

2020

Highlights • Machine learning increasingly important for NGS. • Deep learning can improve many NGS applications.

0301 basic medicineBiomedical ResearchComputer scienceContext (language use)ComputerApplications_COMPUTERSINOTHERSYSTEMSReviewMachine learningcomputer.software_genre03 medical and health sciences0302 clinical medicineDeep LearningGene to ScreenDrug DiscoveryHumansPharmacologyFeature detection (web development)Network architectureArtificial neural networkbusiness.industryDeep learningHigh-Throughput Nucleotide SequencingMedical research030104 developmental biologyMetagenomics030220 oncology & carcinogenesisUnsupervised learningArtificial intelligenceMetagenomicsNeural Networks ComputerbusinesscomputerDrug Discovery Today
researchProduct

Deep learning architectures for prediction of nucleosome positioning from sequences data

2018

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

0301 basic medicineComputer scienceCellBiochemistrychemistry.chemical_compound0302 clinical medicineStructural Biologylcsh:QH301-705.5Nucleosome classificationSequenceSettore INF/01 - InformaticabiologyApplied MathematicsEpigeneticComputer Science ApplicationsChromatinNucleosomesmedicine.anatomical_structurelcsh:R858-859.7EukaryoteDNA microarrayDatabases Nucleic AcidComputational biologySaccharomyces cerevisiaelcsh:Computer applications to medicine. Medical informatics03 medical and health sciencesDeep LearningmedicineNucleosomeAnimalsHumansEpigeneticsMolecular BiologyGeneBase Sequencebusiness.industryDeep learningResearchReproducibility of Resultsbiology.organism_classificationYeastNucleosome classification Epigenetic Deep learning networks Recurrent neural networks030104 developmental biologylcsh:Biology (General)chemistryRecurrent neural networksROC CurveDeep learning networksArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryDNABMC Bioinformatics
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2017

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

0301 basic medicineComputer sciencebusiness.industryProcess (engineering)Deep learningFeature extractionFeature selection02 engineering and technologyMachine learningcomputer.software_genreConvolutional neural networkTask (project management)03 medical and health sciences030104 developmental biologyRecurrent neural network0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceRepresentation (mathematics)businesscomputer
researchProduct

Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes

2020

In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of …

0301 basic medicineGene ExpressionGene Expression Regulation/drug effectsPathology and Laboratory MedicineConvolutional neural networkTOXICITYMachine LearningVoeding Metabolisme en GenomicaTime Measurement0302 clinical medicineGene expressionMedicine and Health SciencesMeasurementClinical Trials as TopicMultidisciplinaryArtificial neural networkPharmaceuticsQRMetabolism and GenomicsTOXICOGENOMICS030220 oncology & carcinogenesisMetabolisme en GenomicaMedicineEngineering and TechnologyNutrition Metabolism and GenomicsHepatocytes/drug effectsAlgorithmsResearch ArticleComputer and Information SciencesClinical Trials as Topic/statistics & numerical dataNeural NetworksGenetic ToxicologyTOXICOLOGYSciencePredictive ToxicologyComputational biologyBiologyComputer03 medical and health sciencesDose Prediction MethodsDeep LearningVoedingArtificial IntelligenceIn vivoGeneticsLife ScienceAnimalsHumansGeneNutritionbusiness.industryDeep learningBiology and Life SciencesGold standard (test)REPRESENTATIONSRats030104 developmental biologyGene Expression RegulationHepatocytesArtificial intelligenceNeural Networks ComputerToxicogenomicsbusinessNeuroscience
researchProduct