Search results for "deformation"
showing 10 items of 515 documents
Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle
2013
Quantification of the microstructural evolution of polycrystalline fabrics using FAME: Application to in situ deformation of ice
2014
Abstract In geology, glaciology and material science new technological advances result in an ever increasing amount of data and datasets, in particular when in situ experiments are conducted. Rapid, rigorous and reliable statistical treatment is needed to allow researchers to access these large datasets for further analysis. Here, we present FAME (Fabric Analyser based Microstructure Evaluation), a suite of Matlab® scripts that utilize the Matlab® open-source toolboxes MTEX and PolyLX (optional) for rapid quantification of thin section data. The data has been collected using an automated Fabric Analyser at a spatial resolution of 5 μm/pixel. From the dataset, grain maps are reconstructed an…
Effect of pressure and temperature on viscosity of a borosilicate glass
2018
International audience; During industrial glass production processes, the actual distribution of stress components in the glass during scribing remains, to date, poorly quantified, and thus continues to be challenging to model numerically. In this work, we experimentally quantified the effect of pressure and temperature on the viscosity of SCHOTT N-BK7 glass, by performing in situ deformation experiments at temperatures between 550 and 595 °C and confining pressures between 100 MPa and 300 MPa. Experiments were performed at constant displacement rates to produce almost constant strain rates between 9.70 × 10 −6 s-1 and 4.98 × 10-5 s-1. The resulting net axial stresses range from 81 MPa to 8…
Obstructing propagation of interfering modes improves detection of guided waves in coated bone models
2014
Interference due to wave propagation in soft tissue that covers the bone is a major challenge to in vivo assessment of the fundamental flexural guided wave (FFGW) in bone. To improve signal-to-interference ratio (SIR) we propose to obstruct the propagation of interfering modes by locally deforming the coating by external mechanical compression. This approach was modeled by 2D finite-element transient domain (FEMTD) simulations in a fluid-coated (7 mm) solid plate (3 mm). The fluid layer mimics the soft tissue that covers the bone. A single emitter or a 6-element phased array excited ultrasound pulses at 50 kHz on the surface of the coating, and a receiver array was placed on the surface, 20…
Welding abilities of UFG metals
2018
Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 μm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone…
The damped harmonic oscillator in deformation quantization
2005
We propose a new approach to the quantization of the damped harmonic oscillator in the framework of deformation quantization. The quantization is performed in the Schr\"{o}dinger picture by a star-product induced by a modified "Poisson bracket". We determine the eigenstates in the damped regime and compute the transition probability between states of the undamped harmonic oscillator after the system was submitted to dissipation.
ON THE DEFORMATION QUANTIZATION OF AFFINE ALGEBRAIC VARIETIES
2004
We compute an explicit algebraic deformation quantization for an affine Poisson variety described by an ideal in a polynomial ring, and inheriting its Poisson structure from the ambient space.
DEFORMATION QUANTIZATION OF COADJOINT ORBITS
2000
A method for the deformation quantization of coadjoint orbits of semisimple Lie groups is proposed. It is based on the algebraic structure of the orbit. Its relation to geometric quantization and differentiable deformations is explored.
Deformation quantization of covariant fields
2002
After sketching recent advances and subtleties in classical relativistically covariant field theories, we give in this short Note some indications as to how the deformation quantization approach can be used to solve or at least give a better understanding of their quantization.
Spectroscopy of short-lived radioactive molecules: A sensitive laboratory for new physics
2019
The study of molecular systems provides exceptional opportunities for the exploration of the fundamental laws of nature and for the search for physics beyond the Standard Model of particle physics. Measurements of molecules composed of naturally occurring nuclei have provided the most stringent upper bounds to the electron electric dipole moment to date, and offer a route to investigate the violation of fundamental symmetries with unprecedented sensitivity. Radioactive molecules - where one or more of their atoms possesses a radioactive nucleus - can contain heavy and deformed nuclei, offering superior sensitivity for EDM measurements as well as for other symmetry-violating effects. Radium …