Search results for "deformation"

showing 10 items of 515 documents

Performance improvements of asphalt mixtures by dry addition of polymeric additives

2017

This paper shows the results of an experimental study concerning the development and optimization of asphalt mixtures for binder and base courses, improved with specifically engineered additives. The focus was on the mechanical improvements of the mixtures as achievable via dry modification with polymeric additives by making use of aggregate and bitumen of average quality, as locally available, in order to limit the consumption of virgin materials. The results allowed interesting conclusions to be drawn about the use of polymeric additives for these mixtures. In particular, the modified mixtures proved to have better performance in terms of both permanent deformation resistance and stiffnes…

Settore ICAR/04 - Strade Ferrovie Ed AeroportiDry Polymeric addivites Permanent deformation Stiffness Fatigue cracking
researchProduct

Calculation of the Electromechanical Properties of CNTs Under Deformation by Means of a Novel Numerical Model

The effects of mechanical deformation on the electron transport behavior of carbon nanotubes (CNTs) are of primary interest due to the enormous potential of nanotubes in making electronic devices and nanoelectromechanical systems (NEMS). Moreover it could help to evaluate the presence of defects or to assess the type of CNTs that were produced. Conventional atomistic simulations have a high computational expense that limits the size of the CNTs that can be studied with this technique. Here we present a novel numerical approach able to simulate the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices. The numerical model was designed to realize orde…

Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCNTs mechanical deformation electron transport numerical models.
researchProduct

Ion Exchange Membrane deformation and its relevance in Reverse ElectroDialysis

2017

Reverse electrodialysis (RED) is an innovative electro-membrane technology for electric energy generation from two salt solutions with different concentration. This different concentration is the driving force to a selective movement of ions from the concentrate channel to the dilute one oriented by Ion Exchange Membranes (IEMs). Typically, RED stack are made by piling alternatively cation exchange membranes and anion exchange membranes with the aid of spacers or profiles built on the membrane surface. Two electrodic compartments are placed at the two ends of the stack, where the ion flux generated is converted into an electric current able to circulate through an external load connected to…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciSettore ING-IND/06 - FluidodinamicaReverse electrodialysis Ion exchange membrane deformationSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Fluid-structure interaction and flow redistribution in membrane-bounded channels

2019

The hydrodynamics of electrodialysis and reverse electrodialysis is commonly studied by neglecting membrane deformation caused by transmembrane pressure (TMP). However, large frictional pressure drops and differences in fluid velocity or physical properties in adjacent channels may lead to significant TMP values. In previous works, we conducted one-way coupled structural-CFD simulations at the scale of one periodic unit of a profiled membrane/channel assembly and computed its deformation and frictional characteristics as functions of TMP. In this work, a novel fluid&ndash

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciControl and OptimizationMaterials scienceFluid structure interactionEnergy Engineering and Power Technologycomputational fluid dynamics02 engineering and technologyComputational fluid dynamicsComputational fluid dynamicslcsh:TechnologyNumerical modelElectromembrane process020401 chemical engineeringComputational fluid dynamicHydraulic permeabilityReversed electrodialysisFluid–structure interactionMembrane deformationSDG 7 - Affordable and Clean Energy0204 chemical engineeringElectrical and Electronic EngineeringElectromembrane proceEngineering (miscellaneous)Profiled membraneSettore ING-IND/19 - Impianti NucleariIon exchange membraneDarcy's lawSuperficial velocitylcsh:TRenewable Energy Sustainability and the Environmentbusiness.industryFlow maldistributionMechanicsElectrodialysisDarcy flow021001 nanoscience & nanotechnologyelectromembrane processFlow velocity0210 nano-technologyPorous mediumbusinessSettore ICAR/08 - Scienza Delle CostruzioniEnergy (miscellaneous)
researchProduct

A novel 2D model for the assessment of deformation-induced flow redistribution phenomena in electrodialysis units

2022

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciElectromembrane process membrane deformation flow maldistribution fluid-structure interaction Darcy flowElectromembrane processFluid structure interactionflow maldistributionfluid-structure interactionmembrane deformationDarcy flowSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

A 2-D model of electrodialysis stacks including the effects of membrane deformation

2021

Abstract Membrane-based processes have gained a relevant role in many engineering applications. Much effort has been devoted to thoroughly understand the fundamental phenomena behind them. However, membrane deformation has been taken into consideration only recently, although much evidence has shown its impacts in many applications. This work presents a novel 2-D, multi-scale, semi-empirical process model able to predict the behavior and the performance of Electrodialysis (ED) systems in cross-flow configurations in the presence and absence of local membrane deformations. The model exploits the results and the simulation approaches of previous fluid-structure investigations performed by the…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technologyDesalinationSherwood number020401 chemical engineeringGeneral Materials Sciencemembrane deflection0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariIon exchange membraneWater Science and Technologyprofiled membranetransmembrane pressureDesalinationMechanical EngineeringGeneral ChemistryMechanicsEnergy consumptionElectrodialysis021001 nanoscience & nanotechnologyVolumetric flow rateMembrane2 d modelSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologyMembrane deformationDesalination
researchProduct

Two-dimensional model of cross-flow electrodialysis units for the assessment of membrane deformation effects on the process performance

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMembrane deformationElectrodialysisWater treatmentSettore ICAR/08 - Scienza Delle CostruzioniModellingSettore ING-IND/19 - Impianti NucleariIon exchange membrane
researchProduct

Numerical simulations supporting process models of chemical engineering: applications for membrane systems

2019

This work presents computational fluid dynamics simulations aimed at characterizing flow and mass/heat transport mechanisms in spacer-filled channels for membrane processes, with particular reference to (reverse) electrodyalisis and membrane distillation.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/19 - Impianti NucleariCFD mass transfer heat transfer membrane process membrane deformation
researchProduct

A process model of electrodialysis including membrane deformation effects

2020

Electrodialysis (ED) is an electro-driven process that makes use of ion exchange membranes (IEMs) under an applied electric field. The main application of ED is the desalination for drinking water production. A transmembrane pressure (TMP) distribution may arise in ED stacks due to an uneven pressure distribution in the two fluid channels, thus causing membrane/channel deformation and flow redistribution. This can occur in large-scale non-parallel configurations, e.g. crossflow arrangements. Detrimental effects of membrane deformation have widely been studied with reference to several membrane processes. However, this aspect has been neglected in ED applications. In this work, a novel proce…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicimembrane deformationElectrodialysiSettore ICAR/08 - Scienza Delle CostruzioniSettore ING-IND/19 - Impianti Nuclearimulti-scale model
researchProduct

A novel fluid-structure 2D modelling tool for the assessment of membrane deformation effects on electrodialysis units performances

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimiciwater desalinationfluid-structure deformationmembrane deformationSettore ICAR/08 - Scienza Delle Costruzioniflow redistributionelectromembrane process
researchProduct