Search results for "denitrification"

showing 10 items of 132 documents

Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures

2005

Abstract On-site post-treatment of anaerobically pre-treated dairy parlour wastewater (DPWW e ; 10 °C) and mixture of kitchen waste and black water (BWKW e ; 20 °C) was studied in moving bed biofilm reactors (MBBR). The focus was on removal of nitrogen and of residual chemical oxygen demand (COD). Moreover, the effect of intermittent aeration and continuous vs. sequencing batch operation was studied. All MBBRs removed 50–60% of nitrogen and 40–70% of total COD (COD t ). Complete nitrification was achieved, but denitrification was restricted by lack of carbon. Nitrogen removal was achieved in a single reactor by applying intermittent aeration. Continuous and sequencing batch operation provid…

0106 biological sciencesBiochemical oxygen demandEnvironmental EngineeringDenitrificationNitrogen010501 environmental sciences01 natural sciencesBioreactors010608 biotechnologyBioreactorWaste Management and Disposal0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringWaste managementChemistryMoving bed biofilm reactorEcological ModelingChemical oxygen demandPollution6. Clean waterCold TemperatureWastewaterBiofilmsNitrificationAerationWater Pollutants ChemicalWater Research
researchProduct

Seasonal cycle of benthic denitrification and DNRA in the aphotic coastal zone, northern Baltic Sea

2020

Current knowledge on the seasonality of benthic nitrate reduction pathways in the aphotic, density stratified coastal zone of the Baltic Sea is largely based on data from muddy sediments, neglecting the potential contribution of sandy sediments. To gain a more comprehensive understanding of seasonality in this part of the Baltic Sea coast, we measured rates of benthic denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) monthly in the ice-free period of 2016 in both sandy and muddy aphotic sediments, northwestern Gulf of Finland. No anammox was observed. The seasonal cycle of denitrification in both sediment types was related to the hydrography-driven development …

0106 biological sciencesDenitrification010504 meteorology & atmospheric sciencesMARINE-SEDIMENTSFIXED-NITROGENsedimentitANAMMOX01 natural scienceswater column density stratificationCoastal zoneorganic matterNUTRIENT FLUXESEcologykausivaihtelutnitraatitWater column density stratificationOceanographyBenthic zoneOrganic matterorgaaninen ainesSeasonal cycledenitrifikaatioSandy sedimentrannikkoalueetDISSIMILATORY NITRATE REDUCTIONNutrient fluxAquatic ScienceNITRIFICATIONNitrate reduction14. Life underwaterCoastal filter1172 Environmental sciencesEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesbenthic−pelagic coupling010604 marine biology & hydrobiologyGeomorphologyISOTOPE PAIRING TECHNIQUENorthern Gulf of FinlandBenthic-pelagic couplingAMMONIUMgeomorphologysandy sedimentESTUARINE SEDIMENTNITROGEN REMOVALnitrate reductionBaltic sea13. Climate actionAphotic zonecoastal filteraineiden kiertoEnvironmental scienceNitrificationMarine Ecology Progress Series
researchProduct

Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with…

2019

Abstract Partial nitrification (PN) is a technically and economically effective solution for the treatment of wastewater featuring low C/N ratio, allowing to achieve approximately 25% energy saving and 40% carbon source for denitrification. This study investigated the effect of different carbon to nitrogen ratio (C/N) and ammonia loading rate (ALR) on PN performances in a sequencing batch reactor (SBR) treating landfill leachate with municipal wastewater. The aim was to find an optimum range for C/N and ALR to maximize PN performances. Results demonstrated that a proper balancing between ALR and C/N is crucial to achieve high PN efficiency. The results highlighted the existence of an optimu…

0106 biological sciencesEnvironmental EngineeringDenitrificationCarbon-to-nitrogen ratioBiomedical EngineeringBioengineeringSequencing batch reactor01 natural sciences03 medical and health sciencesAmmoniachemistry.chemical_compoundNitratelandfill leachate010608 biotechnologyLeachatedenitritationSBR030304 developmental biology0303 health sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientalePulp and paper industrynitrogen removalpartial nitrificationchemistryWastewaterNitrificationC/NBiotechnology
researchProduct

Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems

2017

This paper reviews the main results from a set of experiments carried out in a semiarid Mediterranean environment during the past 25 years on faba bean (<em>Vicia faba</em> L.), a crop traditionally grown in southern Italy and Sicily under rainfed conditions. These experiments focused on the residual effects of faba bean on subsequent crop(s) and assessment of the nitrogen (N) balance during the crop cycle, paying attention to both the environmental release of N (losses via volatilisation and denitrification) and estimates of N2 fixation as influenced by tillage system, intercropping, and presence/absence of mycorrhizal inoculum. Faba bean relied on N2 fixation more than other g…

0106 biological sciencesMediterranean climateDenitrificationGrain legumeCrop rotation; Grain legume; N sparing; N2 fixation; Vicia faba L; Agricultural and Biological Sciences (all)Biologylcsh:Plant culture01 natural sciencesVicia faba L.lcsh:AgricultureN2 fixationCrop rotationN sparingMineral particleslcsh:SB1-1110Leaching (agriculture)lcsh:SIntercropping04 agricultural and veterinary sciencesbiology.organism_classificationVicia fabaSettore AGR/02 - Agronomia E Coltivazioni ErbaceeTillageAgronomyAgricultural and Biological Sciences (all)Vicia faba L040103 agronomy & agriculture0401 agriculture forestry and fisheriesAgronomy and Crop ScienceCropping010606 plant biology & botany
researchProduct

Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities

2016

International audience; Plant species influence soil microbial communities, mainly through their functional traits. However, mechanisms underlying these effects are not well understood, and in particular how plant/ microorganism interactions are affected by plant identities and/or environmental conditions. Here, we performed a greenhouse experiment to assess the effects of three plant species on arbuscular mycorrhizal fungal (AMF) colonization, bacterial potential nitrification (PNA) and denitrification activities (PDA) through their functional traits related to nitrogen acquisition and turnover. Three species with contrasting functional traits and strategies (from exploitative to conservat…

0106 biological sciencesNutrient cycle[SDE.MCG]Environmental Sciences/Global Changesmedia_common.quotation_subjectSoil Science010603 evolutionary biology01 natural sciencesCompetition (biology)[ SDE ] Environmental SciencesNutrientBotanyColonizationNitrification enzyme activityBromus erectusmedia_common2. Zero hunger[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyMycorrhizal colonizationEcologybiologyfungifood and beveragesRoot traits15. Life on landbiology.organism_classificationAgricultural and Biological Sciences (miscellaneous)Colonisation[ SDE.MCG ] Environmental Sciences/Global ChangesDactylis glomerataAgronomyLeaf traits[SDE]Environmental SciencesShootNutrient availability[SDE.BE]Environmental Sciences/Biodiversity and EcologyDenitrification enzyme activity010606 plant biology & botanyApplied Soil Ecology
researchProduct

A comprehensive comparison between halophilic granular and flocculent sludge in withstanding short and long-term salinity fluctuations

2018

The effects of salinity fluctuations on the activity of autochthonous halophilic bacteria in aerobic granular sludge (AGS) and flocculent activated sludge (FAS) reactors were investigated. The response of nitrifiers and denitrifiers activity to drastic and moderate salinity shocks in the short-term (ST) and long-term (LT) was examined. The BOD5removal efficiency decreased only in the reactors subjected to the drastic LT salinity increase. Nevertheless, stable performances were achieved 18 days after the shock in the AGS-R1 (90%), whereas after 27 days in the FAS-R1 (82%). The loss in nitritation efficiency was higher in the FAS reactors and was proportional to the shock intensity. Nitritati…

0208 environmental biotechnology02 engineering and technology010501 environmental sciencesSalinity shockFish-canning wastewater01 natural sciencesAnimal scienceShortcut nitrification/denitrificationmedicineHalophilic bacteriaSafety Risk Reliability and QualityAmmonium oxidationWaste Management and Disposal0105 earth and related environmental sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryProcess Chemistry and TechnologyFASHalophile020801 environmental engineeringSalinityActivated sludgeAerobic granular sludgeShock (circulatory)Steady state (chemistry)medicine.symptomShock intensityBiotechnologyJournal of Water Process Engineering
researchProduct

Efficient recycling of nutrients in modern and past hypersaline environments

2019

The biogeochemistry of hypersaline environments is strongly influenced by changes in biological processes and physicochemical parameters. Although massive evaporation events have occurred repeatedly throughout Earth history, their biogeochemical cycles and global impact remain poorly understood. Here, we provide the first nitrogen isotopic data for nutrients and chloropigments from modern shallow hypersaline environments (solar salterns, Trapani, Italy) and apply the obtained insights to ¿ 15 N signatures of the Messinian salinity crisis (MSC) in the late Miocene. Concentrations and ¿ 15 N of chlorophyll a, bacteriochlorophyll a, nitrate, and ammonium in benthic microbial mats indicate that…

0301 basic medicineBiogeochemical cycleMultidisciplinaryDenitrificationhypersaline environmentslcsh:Rlcsh:MedicineBiogeochemistryLate MioceneArticleSalinity03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinechemistryAnammoxEnvironmental chemistryEnvironmental sciencelcsh:QAmmoniumNitrificationlcsh:Science030217 neurology & neurosurgeryScientific Reports
researchProduct

Changes in soil mineral N content and abundances of bacterial communities involved in N reactions under laboratory conditions as predictors of soil N…

2016

Proper management of soil fertility requires specific tools for predicting N availability for crops as a consequence of different fertilization strategies. More information is required, especially for organic fertilizers, depending on their mineralization rate, composition, and processing (i.e., fresh or composted manure), as well as their effects on soil properties. Laboratory soil incubations were used as a proxy for understanding plant–soil N dynamics under field conditions. Chemical and microbiological measurements as contents of mineral N, potentially mineralizable N and the abundance of key genes regulating the overall N cycle were used as predictors of mineral N availability to maize…

0301 basic medicineDenitrification030106 microbiologySoil ScienceMicrobiologyCrop03 medical and health sciencesHuman fertilizationCurve fittingamoAnirKIncubationChemistryN mineralization04 agricultural and veterinary sciencesMineralization (soil science)ManureNifHAgronomy040103 agronomy & agriculture0401 agriculture forestry and fisheriesgrowth degree dayNitrificationamoA; Curve fitting; Growth degree days; N mineralization; nifH; nirK; Soil Science; Microbiology; Agronomy and Crop ScienceGrowth degree daysSoil fertilityAgronomy and Crop ScienceSettore AGR/16 - Microbiologia Agraria
researchProduct

Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study

2017

Abstract The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed. The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experimen…

0301 basic medicineEnvironmental EngineeringNitrogenIFAS-MBR010501 environmental sciencesManagement Monitoring Policy and LawBiologyWastewaterMembrane bioreactor01 natural sciencesWaste Disposal Fluid03 medical and health sciencesBioreactorsMBBRWaste Management and Disposal0105 earth and related environmental sciencesWWTPBiological nutrients removal; Enhanced biological phosphorus removal; IFAS-MBR; MBBR; Membrane bioreactors; WWTP; Environmental EngineeringSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleMembrane foulingChemical oxygen demandEnvironmental engineeringGeneral MedicinePulp and paper industryBiological nutrients removalNitrification030104 developmental biologyActivated sludgeEnhanced biological phosphorus removalPilot plantWastewaterDenitrificationEnhanced biological phosphorus removalMembrane bioreactorNitrification
researchProduct

Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic A…

2017

Despite the high relevance of anaerobic ammonium oxidation (anammox) for nitrogen loss from marine systems, its relative importance compared to denitrification has less been studied in freshwater ecosystems, and our knowledge is especially scarce for groundwater. Surprisingly, phospholipid fatty acids (PLFA)-based studies identified zones with potentially active anammox bacteria within two superimposed pristine limestone aquifer assemblages of the Hainich Critical Zone Exploratory (CZE; Germany). We found anammox to contribute an estimated 83% to total nitrogen loss in suboxic groundwaters of these aquifer assemblages at rates of 3.5-4.7 nmol L -1 d -1, presumably favored over denitrificati…

0301 basic medicineMicrobiology (medical)DenitrificationBrocadia fulgida030106 microbiologyved/biology.organism_classification_rank.specieslcsh:QR1-502chemistry.chemical_elementAquifersubsurfaceBiologyMicrobiologylcsh:Microbiology03 medical and health sciencesgroundwaterladderane lipidsOriginal Researchgeographydenitrificationgeography.geographical_feature_categoryved/biologyEcologyNitrite reductaseNitrogenchemolithoautotrophy030104 developmental biologychemistryMicrobial population biologyAnammoxanammoxNitrificationFrontiers in Microbiology
researchProduct