Search results for "derivations"

showing 8 items of 8 documents

Unbounded derivations and *-automorphisms groups of Banach quasi *-algebras

2018

This paper is devoted to the study of unbounded derivations on Banach quasi *-algebras with a particular emphasis to the case when they are infinitesimal generators of one parameter automorphisms groups. Both of them, derivations and automorphisms are considered in a weak sense; i.e., with the use of a certain families of bounded sesquilinear forms. Conditions for a weak *-derivation to be the generator of a *-automorphisms group are given.

Unbounded derivationPure mathematicsAutomorphisms groups and their infinitesimal generatorsInfinitesimalBanach quasi *-algebra01 natural sciencesMathematics::Group Theory*-Automorphisms groups and their infinitesimal generatorSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsAutomorphisms groups and their infinitesimal generators; Banach quasi; Integrability of derivation; Unbounded derivations; Automorphisms groups and their infinitesimal generators; Banach quasi; Integrability of derivation; Unbounded derivationsBanach quasi0101 mathematicsOperator Algebras (math.OA)MathematicsGroup (mathematics)Applied Mathematics010102 general mathematicsIntegrability of derivationMathematics - Operator AlgebrasAutomorphismUnbounded derivationsFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded function010307 mathematical physicsGenerator (mathematics)
researchProduct

Solvable Extensions of Nilpotent Complex Lie Algebras of Type {2n,1,1}

2018

We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}

Pure mathematicsGeneral Mathematics010102 general mathematicsType (model theory)01 natural sciencesNilpotentderivations of Lie algebras0103 physical sciencesLie algebraSettore MAT/03 - Geometria010307 mathematical physics0101 mathematicsNilpotent Lie algebraMathematicsMoscow Mathematical Journal
researchProduct

Representations and derivations of quasi ∗-algebras induced by local modifications of states

2009

Abstract The relationship between the GNS representations associated to states on a quasi ∗-algebra, which are local modifications of each other (in a sense which we will discuss) is examined. The role of local modifications on the spatiality of the corresponding induced derivations describing the dynamics of a given quantum system with infinite degrees of freedom is discussed.

Quasi *-algebrasPure mathematicsApplied MathematicsQuantum dynamicsDegrees of freedomAlgebras of unbounded operatorsDerivationsRepresentationSettore MAT/05 - Analisi MatematicaQuantum systemDerivationQuantum dynamicsRepresentation (mathematics)Settore MAT/07 - Fisica MatematicaAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

External derivations of internal groupoids

2008

If His a G-crossed module, the set of derivations of Gin H is a monoid under the Whitehead product of derivations. We interpret the Whitehead product using the correspondence between crossed modules and internal groupoids in the category of groups. Working in the general context of internal groupoids in a finitely complete category, we relate derivations to holomorphisms, translations, affine transformations, and to the embedding category of a groupoid. (C) 2007 Elsevier B.V. All rights reserved.

Higher-dimensional algebraAlgebra and Number TheoryComplete categoryCategory of groupsContext (language use)derivations crossed modules internal groupoids holomorphismsAlgebraSettore MAT/02 - AlgebraMathematics::K-Theory and HomologyMathematics::Category TheoryMonoid (category theory)EmbeddingAffine transformationMathematics::Symplectic GeometryMathematicsWhitehead productJournal of Pure and Applied Algebra
researchProduct

Derivations of the (n, 2, 1)-nilpotent Lie Algebra

2016

In this paper, we study derivations of the (2, n, 1)-nilpotent Lie Algebra

Statistics and ProbabilityPure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematics010103 numerical & computational mathematics01 natural sciencesAlgebraNilpotent Lie algebraSettore MAT/03 - GeometriaDerivation0101 mathematicsNilpotent Lie Algebras derivations.MathematicsJournal of Mathematical Sciences
researchProduct

Sobolev and bounded variation functions on metric measure spaces

2014

International audience

[ MATH ] Mathematics [math]DifferentiabilityEquationsSets010102 general mathematicsTransport[MATH] Mathematics [math]01 natural sciencesDerivationsFine PropertiesFinite Perimeter010104 statistics & probabilityRicci Curvature BoundsLipschitz Functions0101 mathematics[MATH]Mathematics [math]InequalitiesComputingMilieux_MISCELLANEOUS
researchProduct

Embeddings of Danielewski hypersurfaces

2008

In this thesis, we study a class of hypersurfaces in $\mathbb{C}^3$, called \emph{Danielewski hypersurfaces}. This means hypersurfaces $X_{Q,n}$ defined by an equation of the form $x^ny=Q(x,z)$ with $n\in\mathbb{N}_{\geq1}$ and $\deg_z(Q(x,z))\geq2$. We give their complete classification, up to isomorphism, and up to equivalence via an automorphism of $\mathbb{C}^3$. In order to do that, we introduce the notion of standard form and show that every Danielewski hypersurface is isomorphic (by an algorithmic procedure) to a Danielewski hypersurface in standard form. This terminology is relevant since every isomorphism between two standard forms can be extended to an automorphism of the ambiant …

polynomial automorphisms.Danielewski surfacespolynômes équivalentsequivalent polynomialslocally nilpotent derivations[MATH] Mathematics [math]dérivations localement nilpotentesstable equivalence problemDanielewski hypersurfacessurfaces de Danielewskihypersurfaces de Danielewskiproblème de l'équivalence stableautomorphismes polynomiaux
researchProduct

Rationally integrable vector fields and rational additive group actions

2016

International audience; We characterize rational actions of the additive group on algebraic varieties defined over a field of characteristic zero in terms of a suitable integrability property of their associated velocity vector fields. This extends the classical correspondence between regular actions of the additive group on affine algebraic varieties and the so-called locally nilpotent derivations of their coordinate rings. Our results lead in particular to a complete characterization of regular additive group actions on semi-affine varieties in terms of their associated vector fields. Among other applications, we review properties of the rational counterpart of the Makar-Limanov invariant…

Integrable systemRationally integrable derivationsGeneral Mathematics010102 general mathematics05 social sciencesLocally nilpotentAlgebraic variety01 natural sciencesLocally nilpotent derivations[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]AlgebraHomogeneousRational additive group actions0502 economics and businessVector fieldAffine transformation[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]050207 economics0101 mathematicsInvariant (mathematics)MSC: 14E07 14L30 14M25 14R20Additive groupMathematics
researchProduct