Search results for "desi"

showing 10 items of 6638 documents

A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city

2015

AbstractMicroorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the …

0301 basic medicineMediterranean climateMultidisciplinaryBacteriaintegumentary systemMediterranean RegionRange (biology)EcologyMicrobiotaMicroorganism030106 microbiologyFungiBiologyArticle03 medical and health sciencesMicrobial ecosystem030104 developmental biologyMicrobial ecologyMicrobial population biologySpainEnvironmental MicrobiologyEpiphyteCitiesDesiccationScientific Reports
researchProduct

Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing

2016

Background:Francisella tularensis(F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing.Objective:The main goal of this original article was to design suitable long oligo microarray probes for detection and identification ofF. tularensis.Me…

0301 basic medicineMicroarrayBioinformaticsIn silico030106 microbiologyComputational biologyBiologyGenomeArticlelaw.inventionTularemia03 medical and health scienceslawmedicineOligo microarrayFrancisella tularensisTularemiaPolymerase chain reactionFrancisella tularensisProbe designingGeneral Immunology and MicrobiologyDNA microarraymedicine.diseasebiology.organism_classificationDry labDNA microarrayThe Open Microbiology Journal
researchProduct

Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells

2021

CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalov…

0301 basic medicineMicrobiology (medical)Subdominantantigenic peptidesAntigen presentationCD8 T cellsImmunodominanceBiologyArticleEpitopeAntigenic driftprotective immunity03 medical and health sciences0302 clinical medicineMHC class IImmunology and AllergyCytotoxic T cellcytomegalovirusMolecular BiologyimmunodominanceGeneral Immunology and MicrobiologyRVirologyepitope(s)antigen presentation030104 developmental biologyInfectious Diseasesvaccine designbiology.proteinMedicineimmunotherapyCD8030215 immunologyPathogens
researchProduct

A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae

2021

Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate o…

0301 basic medicineMitochondrial DNASaccharomyces cerevisiae ProteinsQH301-705.5030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeMitochondrionyeastMitochondrial DynamicsCatalysisArticleInorganic ChemistryDesiccation tolerance03 medical and health sciencesmedicineDehydrationPhysical and Theoretical ChemistryBiology (General)DesiccationMolecular BiologyQD1-999SpectroscopyMicrobial ViabilitybiologyDehydrationChemistryOrganic ChemistryCell CycleWild typeGeneral Medicinedynamicsmedicine.diseasebiology.organism_classificationYeastComputer Science ApplicationsCell biologyMitochondriaChemistry030104 developmental biologymitochondrial fusionGenome MitochondrialInternational Journal of Molecular Sciences
researchProduct

Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET

2018

Abstract Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex. They are highly dynamic under physiological conditions and studying their interaction with nuclear transport receptors (NTRs) is key to understanding the molecular mechanism of nucleocytoplasmic transport. Distinct conformational features of FG-Nups interacting with diverse NTRs can be detected by multiparameter single-molecule fluorescence energy transfer (smFRET), which is a powerful technique for studying the dynamics and interactions of biomolecules in solution. Here we provide a detailed protocol utilizing smFRET to reveal dif…

0301 basic medicineModels MolecularGlycosylationProtein ConformationPhenylalanineGlycineIntrinsically disordered proteinsArticle03 medical and health scienceschemistry.chemical_compoundFluorescence Resonance Energy TransferAnimalsHumansNuclear porechemistry.chemical_classificationBiomoleculeSingle-molecule FRETEquipment DesignIntrinsically Disordered ProteinsNuclear Pore Complex Proteins030104 developmental biologychemistryNucleocytoplasmic TransportBiophysicsNucleoporinNuclear transportProtein BindingIntrinsically Disordered Proteins
researchProduct

Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer.

2016

Abstract As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non–small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways, leading to epigenetic transformation independent of canonical growth factor pathway activation. As such, tumors feature a transcrip…

0301 basic medicineModels MolecularLung Neoplasmsmedicine.medical_treatmentMolecular ConformationGene ExpressionAntineoplastic Agentsmacromolecular substancesBiologymedicine.disease_causeArticleMalignant transformationTargeted therapy03 medical and health sciencesMiceStructure-Activity RelationshipCell Line TumormedicineAnimalsHumansEnhancer of Zeste Homolog 2 ProteinMolecular Targeted TherapyLung cancerPromoter Regions GeneticGene Expression ProfilingEZH2Cancermedicine.diseaseMagnetic Resonance ImagingXenograft Model Antitumor AssaysChromatinrespiratory tract diseasesGene Expression Regulation NeoplasticDisease Models Animal030104 developmental biologyCell Transformation NeoplasticEnhancer Elements GeneticOncologyDrug DesignCancer researchAdenocarcinomaKRASEpigenetic therapyCancer discovery
researchProduct

Identification of estrogen receptor α ligands with virtual screening techniques.

2016

Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example,…

0301 basic medicineModels MolecularQuantitative structure–activity relationshipMolecular ConformationQuantitative Structure-Activity RelationshipComputational biologyMolecular Dynamics Simulationta3111BioinformaticsLigands01 natural sciencesMolecular Docking SimulationSmall Molecule Libraries03 medical and health sciencesestrogen receptor alphaDrug DiscoveryMaterials ChemistryHumansComputer SimulationPhysical and Theoretical ChemistrySpectroscopy3D-QSARVirtual screeningDrug discoveryChemistryta1182Estrogen Receptor alphaSmall Molecule LibrariesReproducibility of Resultsmolecular dockingvirtual screeningComputer Graphics and Computer-Aided DesignSmall molecule0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyArea Under Curvepharmacophore modelingligand discoverynegative imagePharmacophoreEstrogen receptor alphaJournal of molecular graphicsmodelling
researchProduct

Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling

2016

Clinical cohorts with time-to-event endpoints are increasingly characterized by measurements of a number of single nucleotide polymorphisms that is by a magnitude larger than the number of measurements typically considered at the gene level. At the same time, the size of clinical cohorts often is still limited, calling for novel analysis strategies for identifying potentially prognostic SNPs that can help to better characterize disease processes. We propose such a strategy, drawing on univariate testing ideas from epidemiological case-controls studies on the one hand, and multivariable regression techniques as developed for gene expression data on the other hand. In particular, we focus on …

0301 basic medicineMultivariate analysisMicroarraysTest StatisticsGene Expressionlcsh:MedicineBioinformatics01 natural sciencesHematologic Cancers and Related DisordersCohort Studies010104 statistics & probabilityMathematical and Statistical TechniquesResamplingMedicine and Health Scienceslcsh:ScienceStatistical DataUnivariate analysisMultidisciplinarySimulation and ModelingMultivariable calculusRegression analysisHematologyMyeloid LeukemiaPrognosisRegressionBioassays and Physiological AnalysisOncologyResearch DesignPhysical SciencesStatistics (Mathematics)Research ArticleAcute Myeloid LeukemiaPermutationSingle-nucleotide polymorphismComputational biologyBiologyResearch and Analysis MethodsPolymorphism Single Nucleotide03 medical and health sciencesLeukemiasGeneticsHumansStatistical Methods0101 mathematicsDiscrete Mathematicslcsh:RUnivariateCancers and NeoplasmsBiology and Life SciencesModels Theoretical030104 developmental biologyCombinatoricsCase-Control StudiesMultivariate Analysislcsh:QMathematicsPLOS ONE
researchProduct

Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10

2018

Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescen…

0301 basic medicineMutantGlucuronidationPharmaceutical ScienceUGT1A10030226 pharmacology & pharmacySubstrate Specificity7-hydroxycoumarin derivativechemistry.chemical_compound0302 clinical medicineDrug DiscoveryCRYSTAL-STRUCTUREGlucuronosyltransferaseta116ta317AFFINITYchemistry.chemical_classificationChemistry3. Good healthMolecular ImagingMolecular Docking Simulation7-hydroxycoumarin317 Pharmacyin silicoMolecular MedicinefluorescenceUDP-glucuronosyltransferaseEXPRESSIONENZYMEStereochemistryIn silicoKineticsFLUORESCENT-PROBETriazoleta311103 medical and health sciencesGlucuronidesMicrosomesXENOBIOTICSHumansUmbelliferonesFluorescent DyesGLUCURONIDATIONta1182glucuronidationfluoresenssiSubstrate (chemistry)drug metabolism030104 developmental biologyEnzymeDRUG-METABOLISMDrug DesignMolecular ProbesMutationMutagenesis Site-DirectedORAL BIOAVAILABILITYDrug metabolism
researchProduct

SOLTI-1503 PROMETEO TRIAL: combination of talimogene laherparepvec with atezolizumab in early breast cancer

2020

New treatment strategies such as immune checkpoint inhibitors and oncolytic viruses are opening new possibilities in cancer therapy. Preliminary results in melanoma and other tumors showed that the combination of talimogene laherparepvec with an anti-PD-1/PD-L1 or anti-CTLA4 has greater efficacy than either therapy alone, without additional safety concerns beyond those expected for each agent. The presence of residual cancer after neoadjuvant chemotherapy in early breast cancer patients is an unmet medical need. SOLTI-1503 PROMETEO is a window of opportunity trial, which evaluates the combination of talimogene laherparepvec in combination with atezolizumab in women with operable HER2-negati…

0301 basic medicineOncologyCancer Researchmedicine.medical_specialtyBreast NeoplasmsHerpesvirus 1 HumanAntibodies Monoclonal Humanized03 medical and health sciences0302 clinical medicineBreast cancerClinical ProtocolsAtezolizumabInternal medicineClinical endpointHumansMedicineImmune Checkpoint InhibitorsTriple-negative breast cancerNeoplasm StagingOncolytic VirotherapyBiological ProductsClinical Trials as Topicbusiness.industryMelanomaGeneral MedicineImmune Checkpoint Proteinsmedicine.diseaseCombined Modality TherapyOncolytic virusClinical trial030104 developmental biologyOncologyResearch Design030220 oncology & carcinogenesisFemalebusinessTalimogene laherparepvecFuture Oncology
researchProduct