Search results for "desi"
showing 10 items of 6638 documents
A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city
2015
AbstractMicroorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the …
Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing
2016
Background:Francisella tularensis(F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing.Objective:The main goal of this original article was to design suitable long oligo microarray probes for detection and identification ofF. tularensis.Me…
Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells
2021
CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalov…
A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae
2021
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate o…
Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET
2018
Abstract Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex. They are highly dynamic under physiological conditions and studying their interaction with nuclear transport receptors (NTRs) is key to understanding the molecular mechanism of nucleocytoplasmic transport. Distinct conformational features of FG-Nups interacting with diverse NTRs can be detected by multiparameter single-molecule fluorescence energy transfer (smFRET), which is a powerful technique for studying the dynamics and interactions of biomolecules in solution. Here we provide a detailed protocol utilizing smFRET to reveal dif…
Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer.
2016
Abstract As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non–small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways, leading to epigenetic transformation independent of canonical growth factor pathway activation. As such, tumors feature a transcrip…
Identification of estrogen receptor α ligands with virtual screening techniques.
2016
Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example,…
Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling
2016
Clinical cohorts with time-to-event endpoints are increasingly characterized by measurements of a number of single nucleotide polymorphisms that is by a magnitude larger than the number of measurements typically considered at the gene level. At the same time, the size of clinical cohorts often is still limited, calling for novel analysis strategies for identifying potentially prognostic SNPs that can help to better characterize disease processes. We propose such a strategy, drawing on univariate testing ideas from epidemiological case-controls studies on the one hand, and multivariable regression techniques as developed for gene expression data on the other hand. In particular, we focus on …
Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10
2018
Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescen…
SOLTI-1503 PROMETEO TRIAL: combination of talimogene laherparepvec with atezolizumab in early breast cancer
2020
New treatment strategies such as immune checkpoint inhibitors and oncolytic viruses are opening new possibilities in cancer therapy. Preliminary results in melanoma and other tumors showed that the combination of talimogene laherparepvec with an anti-PD-1/PD-L1 or anti-CTLA4 has greater efficacy than either therapy alone, without additional safety concerns beyond those expected for each agent. The presence of residual cancer after neoadjuvant chemotherapy in early breast cancer patients is an unmet medical need. SOLTI-1503 PROMETEO is a window of opportunity trial, which evaluates the combination of talimogene laherparepvec in combination with atezolizumab in women with operable HER2-negati…