Search results for "design."
showing 10 items of 5715 documents
On the Heuristic Procedure to Determine Processing Parameters in Additive Manufacturing Based on Materials Extrusion
2020
We present a heuristic procedure for determining key processing parameters (PPs) in materials-extrusion-based additive manufacturing processes. The concept relies on a design-of-experiment approach and consists of eleven &ldquo
Interdisciplinary design methodology for systems of mechatronic systems focus on highly dynamic environmental applications
2017
This paper discusses a series of research challenges in the design of systems of mechatronic systems. A focus is given to environmental mechatronic applications within the chain “Renewable energy production — Smart grids — Electric vehicles”. For the considered mechatronic systems, the main design targets are formulated, the relations to state and parameter estimation, disturbance observation and rejection as well as control algorithms are highlighted. Finally, the study introduces an interdisciplinary design approach based on the intersectoral transfer of knowledge and collaborative experimental activities.
Graph Filtering of Time-Varying Signals over Asymmetric Wireless Sensor Networks
2019
In many applications involving wireless sensor networks (WSNs), the observed data can be modeled as signals defined over graphs. As a consequence, an increasing interest has been witnessed to develop new methods to analyze graph signals, leading to the emergence of the field of Graph Signal Processing. One of the most important processing tools in this field is graph filters, which can be easily implemented distributedly over networks by means of cooperation among the nodes. Most of previous works related to graph filters assume the same connection probability in both link directions when transmitting an information between two neighboring nodes. This assumption is not realistic in practice…
A theoretical framework for product relationships description over space and time in integrated design
2016
ABSTRACTThis paper presents a novel qualitative description theory in the context of integrated design, which here incorporates assembly sequence planning in the early product design stages (also called assembly oriented design – AOD). Based on a literature review of current AOD approaches, product models and mereotopology-based theories, the authors introduce a promising mereotopological theory which enables the formal product relationships description in integrated design by introducing an emerging framework, four-dimensionalism (i.e. perdurantism in philosophy). The proposed efforts aim at providing a concrete basis for describing the evolution of spatial entities (i.e. product parts) an…
The application of the random balance method in laser machining of metals
2008
International audience; Features peculiar to laser technology offer some advantages over more traditional processes, but, like all processes, it has its limitations. This article studies the limitations of laser machining of metals, and quantifies, through an experimental design method, the influence of operating parameters on productivity and on the quality of the machined surface. Three study materials were used: an aluminium alloy, stainless steel and a titanium alloy. An initial reading of the results indicates that productivity depends mainly on the frequency of the laser pulse and that the aluminium alloy behaves differently from the other two. The quality of the machined surface, jud…
The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and co…
2011
Abstract While hybrid laser welding and coating processes involve a large number of physical phenomena, it is currently impossible to predict, for a given set of influencing factors, the shape of the molten zone and the history of temperature fields inside the parts. This remains true for complex processes, such as the hybrid laser/MIG welding process, which consists in combining a laser beam with a MIG torch. The gains obtained result essentially from the synergy of the associated processes: the stability of the process, the quality of the seam realized, and the productivity are increased. This article shows how, by means of a reduced number of experiments (8), it is possible to predict th…
Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties
2018
Abstract Friction Stir Extrusion is an innovative direct-recycling technology developed for metal machining chips. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be recycled. The stirring action of the die prompts solid bonding phenomena allowing the back extrusion of a full dense rod. One of the main weakness of this technology is the discontinuity of the process itself that limits the extrudates volume to the capacity of the chamber. In order to overcome that limitation, a dedicated extrusion fixture has to be developed, keeping into account the concurrent needs of a continuous machine. The geometry of the die has to ensure proper press…
Stable layer-building strategy to enhance cold-spray-based additive manufacturing
2020
Abstract Cold spray (CS) has recently become one of the popular additive manufacturing (AM) processes for its advantages: high-forming efficiency, low temperature, and no phase changing of materials. These advantages may make CS able to form large volume objects and possibly directly iterate with material-removing processes to become a hybrid AM process. Current research proposes using a bulk-based volume-forming strategy (e.g. a tessellation-based method) for volume building. Although it can form 3D volumes, the control of the process is difficult and it has limitations in forming complex 3D near-net-shapes with acceptable accuracy. This also conflicts with the basic principle of AM, where…
A strategic oscillation simheuristic for the Time Capacitated Arc Routing Problem with stochastic demands
2021
Abstract The Time Capacitated Arc Routing Problem (TCARP) extends the classical Capacitated Arc Routing Problem by considering time-based capacities instead of traditional loading capacities. In the TCARP, the costs associated with traversing and servicing arcs, as well as the vehicle’s capacity, are measured in time units. The increasing use of electric vehicles and unmanned aerial vehicles, which use batteries of limited duration, illustrates the importance of time-capacitated routing problems. In this paper, we consider the TCARP with stochastic demands, i.e.: the actual demands on each edge are random variables which specific values are only revealed once the vehicle traverses the arc. …
Game Theoretic Decentralized Feedback Controls in Markov Jump Processes
2017
This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state-space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and to global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is ill…