Search results for "dglar"
showing 10 items of 10 documents
An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models
2020
In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.
An efficient algorithm to estimate the sparse group structure of an high-dimensional generalized linear model
2014
Massive regression is one of the new frontiers of computational statistics. In this paper we propose a generalization of the group least angle regression method based on the differential geometrical structure of a generalized linear model specified by a fixed and known group structure of the predictors. An efficient algorithm is also proposed to compute the proposed solution curve.
A Software Tool For Sparse Estimation Of A General Class Of High-dimensional GLMs
2022
Generalized linear models are the workhorse of many inferential problems. Also in the modern era with high-dimensional settings, such models have been proven to be effective exploratory tools. Most attention has been paid to Gaussian, binomial and Poisson settings, which have efficient computational implementations and where either the dispersion parameter is largely irrelevant or absent. However, general GLMs have dispersion parameters φ that affect the value of the log- likelihood. This in turn, affects the value of various information criteria such as AIC and BIC, and has a considerable impact on the computation and selection of the optimal model.The R-package dglars is one of the standa…
Estimation of sparse generalized linear models: the dglars package
2013
dglars is a public available R package that implements the method proposed in Augugliaro, Mineo and Wit (2013) developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method (LARS). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve; specifically a predictor-corrector algorithm and a cyclic coordinate descent algorithm.
Sparse relative risk survival modelling
2016
Cancer survival is thought to closed linked to the genimic constitution of the tumour. Discovering such signatures will be useful in the diagnosis of the patient and may be used for treatment decisions and perhaps even the development of new treatments. However, genomic data are typically noisy and high-dimensional, often outstripping the number included in the study. Regularized survival models have been proposed to deal with such scenary. These methods typically induce sparsity by means of a coincidental match of the geometry of the convex likelihood and (near) non-convex regularizer.
Sparse relative risk regression models
2020
Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…
Using Differential Geometry for Sparse High-Dimensional Risk Regression Models
2023
With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.
dglars: An R Package to Estimate Sparse Generalized Linear Models
2014
dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013), developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013), and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012). The latter algorithm, as shown here, is significan…
Using the dglars Package to Estimate a Sparse Generalized Linear Model
2015
dglars is a publicly available R package that implements the method proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed to study the sparse structure of a generalized linear model (GLM). This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method. The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve. dglars is a publicly available R package that implements the method proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed to study the sparse structure of a generalized linear model (GLM). This method, call…
Differential geometric LARS via cyclic coordinate descent method
2012
We address the problem of how to compute the coefficient path implicitly defined by the differential geometric LARS (dgLARS) method in a high-dimensional setting. Although the geometrical theory developed to define the dgLARS method does not need of the definition of a penalty function, we show that it is possible to develop a cyclic coordinate descent algorithm to compute the solution curve in a high-dimensional setting. Simulation studies show that the proposed algorithm is significantly faster than the prediction-corrector algorithm originally developed to compute the dgLARS solution curve.