Search results for "diamond"
showing 10 items of 234 documents
Unraveling In vivo brain transport of protein‐coated fluorescent nanodiamonds
2019
The blood–brain barrier is the biggest hurdle to overcome for the treatment of neurological disorders. Here, protein‐coated nanodiamonds are delivered to the brain and taken up by neurovascular unit cells after intravenous injection. Thus, for the first time, nanodiamonds with their unique properties and a flexible protein coating for the attachment of therapeutics emerge as a potential platform for nanotheranostics of neurological disorders.Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood–brain barrier (BBB) preventing systemic…
Nucleation mechanism for the direct graphite-to-diamond phase transition
2011
Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleat…
Electrochemical synthesis on boron-doped diamond
2012
Abstract Boron-doped diamond (BDD) is a novel and innovative electrode material. In protic media and particular aqueous electrolytes BDD exhibits a large over potential for the evolution of molecular hydrogen and oxygen. The large chemical window allows a variety of electrochemical conversions to be conducted. The anodic process treatment generates oxyl species directly which are known to be extremely reactive. Usually, the electrochemical mineralization of the organic components in the electrolyte occurs. However, with control of the reactivity of these intermediates the use in electroorganic synthesis can be realized. Until today mostly anodic conversions have been studied at BDD. Since h…
Low-cost set-up for Fourier-transform infrared spectroscopy in diamond anvil cell from 4000 to 400 cm−1
2011
An experimental set-up for Fourier-transform infrared (FTIR) studies at high pressure in the mid-IR region (400–4000 cm−1) is constructed using a compact TEO-400 FTIR interferometer module and an external microscopic optical bench with cassegrain focusing objectives. Cassegrain-type reflective objectives act as an excellent beam condenser that facilitates the interfacing between FTIR spectrometer and diamond anvil cell. This set-up is capable of recording transmission and reflection infrared spectra at high pressure. Preliminary results are reported both in the reflection (pressure dependence of polar phonons in CuWO4) and transmission configuration (polarized light absorption of polar phon…
Miniature diamond-anvil cells for FTIR-microspectroscopy of small quantities of biosamples.
2018
Fourier transform infrared (FTIR) spectroscopy techniques and data analyses have become widely available, are easy to use, and are convenient for studies of various biosamples, especially in biomedical science. Yet, cultivation of cells and purification of cell components are costly, often methodically challenging, and time and labor consuming. Therefore, reduction of the sample amount is of high value. Here we propose a novel method for the analysis of small quantities of biosamples by FTIR-microscopy of dry films using a diamond-anvil cell (DAC). This approach allows us to decrease the sample volume at least a hundred times compared to that for a high-throughput screening device (HTS-XT, …
Magnetometry with Nitrogen-Vacancy Centers in Diamond
2016
This chapter covers magnetic sensing with nitrogen-vacancy (NV) defect centers in diamond. The NV center fundamentals are introduced and NV optically detected magnetic resonance techniques for dc and ac magnetic sensing are summarized. After reviewing some successful sensing applications, the advantages for using NV magnetometry, as well as some ongoing challenges, are enumerated.
On the slabbing of stones through diamond wire cutting operations
2009
Diamond wires are usually used in the cutting operations aimed to obtain slabs of stones. This tool consists of a steel cable on which are mounted annular metal—diamond pearls. The use of this technology expanded all over the world because of its advantages on other slabbing techniques as both technical and economical aspects are considered. It should be observed that with this technology wear phenomena must be properly monitored in order to obtain the best process conditions. In this article, the diamond wire cutting operation is investigated, highlighting the process mechanics and the wear phenomena occurring in the used tools. Furthermore, a modified version of the tool itself is propos…
Thermal conductivity of group-IV Semiconductors from a Kinetic-Collective Model
2014
The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the ther…
Pressure measurements of TO-phonon anharmonicity in isotopic ZnS
2004
We have measured the dependence on pressure of the line-widths of the TO and LO Raman phonons of β-ZnS. In order to enhance the phenomena observed, and to eliminate possible effects of isotopic disorder, we have measured a nearly isotopically pure crystal, 68 Zn 32 S. The strongly structured pressure effects observed are interpreted on the basis of anharmonic decay and the corresponding two-phonon density of states.
Fluorescent nanodiamonds encapsulated byCowpea Chlorotic Mottle Virus(CCMV) proteins for intracellular 3D-trajectory analysis
2021
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-ma…