Search results for "differential equations"
showing 10 items of 169 documents
Diferenciālvienādojumi un variāciju rēķini, 2. daļa
1938
Variāciju rēķinu direktās metodes: maģistra darbs
1942
Математика: Дифференциальные уравнения
1994
Rakstu krājums satur zinātniskos rakstus, kuri veltīti parasto diferenciālvienādojumu teorijai. Pētīti jautājumi par diferenciālvienādojumu atrisinājumu eksistenci, atrisinājumu kopas struktūru un atrisinājumu īpašībām. Daži raksti veltīti konkrēto praktisko problēmu pētījumu metožu (tai skaitā skaitlisko) izstrādei.
Математика: Дифференциальные уравнения
1992
Сборник содержит 13 статей, большая часть работ посвящена разработке общей теории нелинейных краевых задач обыкновенных дифференциальных уравнений. В ряде статей решаются конкретные актуальные задачи, строятся разностные схемы решения задач в частных производных, рассматриваются операторные уравнения и уравнения с различными особенностями.
Математика: Дифференциальные уравнения
1990
Сборник содержит 16 статей, большинство статей посвящено изучению различных актуальных теоретических и прикладных вопросов нелинейных краевых задач обыкновенных дифференциальных уравнений. В ряде статей рассматриваются уравнения с частными производными, уравнения с запаздыванием, а также строятся разностные схемы решения начальных и краевых задач.
Modelling of Pe C alloys solidification using the artificial heat source method
1997
Abstract In the paper the numerical solutions concerning the cast iron and also the carbon steel solidification are presented. In order to take into account the non-linearities appearing in differential equations describing the boundary-initial problem considered — a certain algorithm called the artificial heat source method has been used. The examples illustrating the possibilities of proposed method applications have been solved by means of the boundary element method, but the others numerical methods can be also utilized.
DEGENERATE MATRIX METHOD FOR SOLVING NONLINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
1998
Degenerate matrix method for numerical solving nonlinear systems of ordinary differential equations is considered. The method is based on an application of special degenerate matrix and usual iteration procedure. The method, which is connected with an implicit Runge‐Kutta method, can be simply realized on computers. An estimation for the error of the method is given. First Published Online: 14 Oct 2010
Qualitative Theory of Differential Equations, Difference Equations, and Dynamic Equations on Time Scales
2016
We are pleased to present this special issue. This volume reflects an increasing interest in the analysis of qualitative behavior of solutions to differential equations, difference equations, and dynamic equations on time scales. Numerous applications arising in the engineering and natural sciences call for the development of new efficient methods and for the modification and refinement of known techniques that should be adjusted for the analysis of new classes of problems. The twofold goal of this special issue is to reflect both the state-of-the-art theoretical research and important recent advances in the solution of applied problems.
Solving continuous models with dependent uncertainty: a computational approach
2013
This paper presents a computational study on a quasi-Galerkin projection-based method to deal with a class of systems of random ordinary differential equations (r.o.d.e.'s) which is assumed to depend on a finite number of random variables (r.v.'s). This class of systems of r.o.d.e.'s appears in different areas, particularly in epidemiology modelling. In contrast with the other available Galerkin-based techniques, such as the generalized Polynomial Chaos, the proposed method expands the solution directly in terms of the random inputs rather than auxiliary r.v.'s. Theoretically, Galerkin projection-based methods take advantage of orthogonality with the aim of simplifying the involved computat…
Regularity of solutions to differential equations with non-Lipschitz coefficients
2008
AbstractWe study the ordinary and stochastic differential equations whose coefficients satisfy certain non-Lipschitz conditions, namely, we study the behaviors of small subsets under the flows generated by these equations.