Search results for "differential evolution"
showing 10 items of 30 documents
Memetic Algorithms in Continuous Optimization
2012
Intuitively, a set is considered to be discrete if it is composed of isolated elements, whereas it is considered to be continuous if it is composed of infinite and contiguous elements and does not contain “holes”.
Disturbed Exploitation compact Differential Evolution for Limited Memory Optimization Problems
2011
This paper proposes a novel and unconventional Memetic Computing approach for solving continuous optimization problems characterized by memory limitations. The proposed algorithm, unlike employing an explorative evolutionary framework and a set of local search algorithms, employs multiple exploitative search within the main framework and performs a multiple step global search by means of a randomized perturbation of the virtual population corresponding to a periodical randomization of the search for the exploitative operators. The proposed Memetic Computing approach is based on a populationless (compact) evolutionary framework which, instead of processing a population of solutions, handles …
A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.
2017
The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VM…
Nature That Breeds Solutions
2012
Nature has always been a source of inspiration. Over the last few decades, it has stimulated many successful techniques, algorithms and computational applications for dealing with large, complex and dynamic real world problems. In this article, the authors discuss why nature-inspired solutions have become increasingly important and favourable for tackling the conventionally-hard problems. They also present the concepts and background of some selected examples from the domain of natural computing, and describe their key applications in business, science and engineering. Finally, the future trends are highlighted to provide a vision for the potential growth of this field.
Memetic Differential Evolution Frameworks in Filter Design for Defect Detection in Paper Production
2009
This chapter studies and analyzes Memetic Differential Evolution (MDE) Frameworks for designing digital filters, which aim at detecting paper defects produced during an industrial process. MDE Frameworks employ the Differential Evolution (DE) as an evolutionary framework and a list of local searchers adaptively coordinated by a control scheme. Here, three different variants of MDE are taken into account and their features and performance are compared. The binomial explorative features of the DE framework in contraposition to the exploitative features of the local searcher are analyzed in detail in light of the stagnation prevention problem, typical for the DE. Much emphasis in this chapter …
A Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production
2007
This article proposes a Memetic Differential Evolution (MDE) for designing digital filters which aim at detecting defects of the paper produced during an industrial process. The MDE is an adaptive evolutionary algorithm which combines the powerful explorative features of Differential Evolution (DE) with the exploitative features of two local searchers. The local searchers are adaptively activated by means of a novel control parameter which measures fitness diversity within the population. Numerical results show that the DE framework is efficient for the class of problems under study and employment of exploitative local searchers is helpful in supporting the DE explorative mechanism in avoid…
One-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer
2020
Computer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case lead to wrong diagnosis and treatment. In this research, the goal is to demonstrate the use of one-pixel attacks in a real-life scenario with a real pathology dataset, TUPAC16, which consists of digitized whole-slide images. We attack against the IBM CODAIT's MAX breast cancer detector using adversarial images. These adversarial examples are found using differential evolution to perform the one-pixel modification to the images in the dataset. The results indicate that a mino…
Improving High Frequency Transformers behavior for DC-DC Converter Used in Electric Vehicles
2018
The paper presents a design procedure for high frequency transformer windings adopted in the DC-DC converter used in electric vehicles. The output of the design procedure is the integration of a 3D printed plastic case in the transformer windings, with the aim to maximize the output power. The proposal design procedure is entirely based on a finite element analysis approach and on a differential evolution algorithm used for the solution of the optimization problem.
Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography
2009
In this article, various metaheuristics for a numerical optimization problem with application to Electric Impedance Tomography are tested and compared. The experimental setup is composed of a real valued Genetic Algorithm, the Differential Evolution, a self adaptive Differential Evolution recently proposed in literature, and two novel Memetic Algorithms designed for the problem under study. The two proposed algorithms employ different algorithmic philosophies in the field of Memetic Computing. The first algorithm integrates a local search into the operations of the offspring generation, while the second algorithm applies a local search to individuals already generated in the spirit of life-…
A New Distributed Optimization Approach for Solving CFD Design Problems Using Nash Game Coalition and Evolutionary Algorithms
2013
For decades, domain decomposition methods (DDM) have provided a way of solving large-scale problems by distributing the calculation over a number of processing units. In the case of shape optimization, this has been done for each new design introduced by the optimization algorithm. This sequential process introduces a bottleneck.