Search results for "dipole"

showing 10 items of 982 documents

Axion Searches with Microwave Filters: the RADES project

2018

We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the de…

Dark matterFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)OpticsDipole magnet0103 physical sciencesSensitivity (control systems)010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Colliderhep-ex010308 nuclear & particles physicsbusiness.industryDetectorhep-phAstronomy and AstrophysicsHigh Energy Physics - PhenomenologybusinessParticle Physics - ExperimentMicrowave
researchProduct

Induced Dipoles and Possible Modulation of Wireless Effects in Implanted Electrodes. Effects of Implanting Insulated Electrodes on an Animal Test to …

2021

There is evidence that Deep Brain Stimulation (DBS) produces health benefits in patients even before initiating stimulation. Furthermore, DBS electrode insertion in rat infralimbic cortex (ILC) provokes antidepressant-like effects before stimulation, due to local inflammation and astrogliosis. Consequently, a significant effect of implanting electrodes is suspected. External fields, similar in magnitude to the brain’s endogenous fields, induce electric dipoles in conducting materials, in turn influencing neural cell growth through wireless effects. To elucidate if such dipoles influence depressive-like behavior, without external stimulation, the comparative effect of conducting and insulate…

Deep Brain Stimulation; depression; infralimbic cortex; rat; induced dipoles; implanted materials; feedback interactions; insulating; conducting materialsDeep brain stimulationmedicine.medical_treatmentDeep Brain StimulationInfralimbic cortexinsulatingStimulationInduced dipolesconducting materialsArticleInfralimbic cortexConducting materialsmedicineratImplanted materialsInsulatingFeedback interactionsbusiness.industryDepressionRGeneral Medicinemedicine.diseaseAstrogliosismedicine.anatomical_structureGliosisinfralimbic cortexModulationimplanted materialsdepressionElectrodeMedicineRatinduced dipolesNeuronmedicine.symptomfeedback interactionsbusinessBiomedical engineering
researchProduct

Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling

2021

Strong light-matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of materials properties. In particular the latter possibility has spurred the development of advanced theoretical techniques that can accurately capture both quantum optical and quantum chemical degrees of freedom. These methods are, however, computationally very demanding, which limits their application range. Here, we demonstrate that the optical spectra of nanoparticle-molecule assemblies, including strong coupling effects, can be predicted with good accuracy using a subsystem approach, in which the response functions of the different units are coupled only a…

Degrees of freedom (statistics)General Physics and AstronomyNanoparticleFOS: Physical sciences010402 general chemistryoptiset ominaisuudet01 natural scienceslinear combination of atomic orbitalstime dependent density functional theorynanorakenteet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)MoleculePhysical and Theoretical Chemistryoptical spectroscopyQuantumPhysicssurface optics010304 chemical physicsCondensed Matter - Mesoscale and Nanoscale Physicstiheysfunktionaaliteoriapolarizability0104 chemical sciencesplasmonitRange (mathematics)DipoleChemical physicsDensity functional theorynanoparticlesnanohiukkasetplasmonsMagnetic dipole–dipole interaction
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

Effect of cobalt doping on the dielectric response of $B_{0.95}Pb_{0.05}TiO_3$ ceramics

2013

Dielectric response of Ba 0.95 Pb 0.05 TiO 3 ceramics doped with 0.1 and 1 wt.% of Co 2 O 3 , synthesized by conven- tional high-temperature method, wa s studied in wide temperature and frequency range. The temperature dependences of the real and the imaginary parts of dielectric permittivity of the ceramics were compared with those of BaTiO 3 and Ba 0.95 Pb 0.05 TiO 3. The addition of Co 3+ ions results in a broadening of dielectric anom- alies related to the transition to p araelectric cubic phase, and the structural transition between the tetragonal and the orthorhombic phases. At low temperatures (125 – 200 K) the dielectric absorp- tion of Co-doped Ba 0.95 Pb 0.05 TiO 3 ceramics was fo…

Dielectric absorptionMaterials scienceCondensed matter physics$B_{0.95}Pb_{0.05}TiO_3$Dopingdeviation from the Curie-WeisslawDielectricCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsIonco-dopingTetragonal crystal systemDipoleMechanics of Materialsdielectric propertiesvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumOrthorhombic crystal systemCeramicElectrical and Electronic Engineering
researchProduct

The molecular dynamics of thermoreversible networks as studied by broadband dielectric spectroscopy

1995

Polybutadienes modified by a small number of 4-phenyl-1,2,4-triazoline-3,5-dione form thermoreversible networks via hydrogen bonding between the polar stickers. The molecular dynamics of systems with different contents of polar stickers are investigated by broadband dielectric spectroscopy in the frequency regime of 10−1–109 Hz. Unmodified polybutadiene shows two relaxation processes, the α-relaxation which is correlated to the dynamic glass transition of the polybutadiene, and a β-relaxation corresponding to a local relaxation of polybutadiene segments. In the polar functionalized systems, besides these two relaxations, an additional relaxation process (called α*) is observed, which occurs…

Dielectric absorptionPolymers and PlasticsChemistryDissociation (chemistry)Dielectric spectroscopyReptationMolecular dynamicsDipoleColloid and Surface ChemistryPolybutadieneChemical physicsPolymer chemistryMaterials ChemistryPhysical and Theoretical ChemistryGlass transitionColloid & Polymer Science
researchProduct

Crystal structure analysis of a star-shaped triazine compound: a combination of single-crystal three-dimensional electron diffraction and powder X-ra…

2017

The solid-state structure of star-shaped 2,4,6-tris{(E)-2-[4-(dimethylamino)-phenyl]ethenyl}-1,3,5-triazine is determined from a powder sample by exploiting the respective strengths of single-crystal three-dimensional electron diffraction and powder X-ray diffraction data. The unit-cell parameters were determined from single crystal electron diffraction data. Using this information, the powder X-ray diffraction data were indexed, and the crystal structure was determined from the powder diffraction profile. The compound crystallizes in a noncentrosymmetric space group,P212121. The molecular conformation in the crystal structure was used to calculate the molecular dipole moment of 3.22 Debye,…

DiffractionChemistryMetals and Alloys02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsDipolesymbols.namesakeCrystallographyElectron diffractionX-ray crystallographyMaterials Chemistrysymbols0210 nano-technologySingle crystalPowder diffractionDebyeActa crystallographica Section B, Structural science, crystal engineering and materials
researchProduct

Small-x, Diffraction and Vector Mesons

2015

This talk discusses recent progress in some topics relevant for deep inelastic scattering at small x. We discuss first differences and similarities between conventional collinear factorization and the dipole picture of deep inelastic scattering. Many of the recent theoretical advances at small x are related to taking calculations in the nonlinear saturation regime to next-to-leading order accuracy in the QCD coupling. On the experimental side significant recent progress has been made in exclusive and diffractive processes, in particular in ultraperipheral nucleus-nucleus collisions.

DiffractionParticle physicsMesonNuclear TheoryeducationFOS: Physical sciences114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)next-to-leading order accuracycollinear factorizationHigh Energy Physics - Phenomenology (hep-ph)Factorizationdeep inelastic scattering0103 physical sciencesNonlinear saturation010306 general physicsCouplingQuantum chromodynamicsPhysicsultraperipheral collisionsdipole picture010308 nuclear & particles physicsDeep inelastic scatteringDipoleHigh Energy Physics - Phenomenologysmall x
researchProduct

Diffractive vector meson production in ultraperipheral heavy ion collisions from the Color Glass Condensate

2014

We compute cross sections for incoherent and coherent diffractive J/$\Psi$ and $\Psi(2S)$ production in ultraperipheral heavy ion collisions. The dipole models used in these calculations are obtained by fitting the HERA deep inelastic scattering data and compared with available electron-proton diffraction measurements. We obtain a reasonably good description of the available ALICE data. We find that the normalization of the ultraperipheral cross section has large model dependence, but the rapidity dependence is more tightly constrained.

DiffractionPhysicsNuclear TheoryFOS: Physical sciencesHERADeep inelastic scatteringColor-glass condensateNuclear physicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyCross section (physics)DipoleHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentRapidityVector meson
researchProduct

Selective guest inclusion of linear C6 hydrocarbons in a Zn(ii) 1D coordination polymer

2021

Trapping of volatile unbranched C6 hydrocarbons (hexane, 1-hexene, and 1-hexyne) in a 1D coordination polymer is reported. The guest inclusion was studied quantitatively by 1H-NMR analysis and thermogravimetric measurements, while synchrotron single-crystal diffraction data allowed advancing the view of their confinement into linear CP channels. Adsorption experiments performed through solid/vapour processes on microcrystals of CP 1 showed a certain degree of selectivity for 1-hexyne, which could be rationalized by its larger dipole moment.

DiffractionThermogravimetric analysisCoordination polymerGeneral ChemistryCatalysisSynchrotronlaw.inventionHexanechemistry.chemical_compoundDipoleAdsorptionchemistrylawMaterials ChemistryPhysical chemistrySelectivityNew Journal of Chemistry
researchProduct