Search results for "discretization"
showing 10 items of 237 documents
Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle
2000
We prove that a discrete maximum principle holds for continuous piecewise linear finite element approximations for the Poisson equation with the Dirichlet boundary condition also under a condition of the existence of some obtuse internal angles between faces of terahedra of triangulations of a given space domain. This result represents a weakened form of the acute type condition for the three-dimensional case.
A formal proof of the ε-optimality of absorbing continuous pursuit algorithms using the theory of regular functions
2014
Published version of an article from the journal: Applied Intelligence. Also available on Springerlink: http://dx.doi.org/10.1007/s10489-014-0541-1 The most difficult part in the design and analysis of Learning Automata (LA) consists of the formal proofs of their convergence accuracies. The mathematical techniques used for the different families (Fixed Structure, Variable Structure, Discretized etc.) are quite distinct. Among the families of LA, Estimator Algorithms (EAs) are certainly the fastest, and within this family, the set of Pursuit algorithms have been considered to be the pioneering schemes. Informally, if the environment is stationary, their ε-optimality is defined as their abili…
A regular variational boundary model for free vibrations of magneto-electro-elastic structures
2011
In this paper a regular variational boundary element formulation for dynamic analysis of two-dimensional magneto-electro-elastic domains is presented. The method is based on a hybrid variational principle expressed in terms of generalized magneto-electro-elastic variables. The domain variables are approximated by using a superposition of weighted regular fundamental solutions of the static magneto-electro-elastic problem, whereas the boundary variables are expressed in terms of nodal values. The variational principle coupled with the proposed discretization scheme leads to the calculation of frequency-independent and symmetric generalized stiffness and mass matrices. The generalized stiffne…
A meshfree method for transverse vibrations of anisotropic plates
2003
A meshfree approach, called displacement boundary method, for anisotropic Kirchhoff plate dynamic analysis is presented. This method is deduced from a variational principle, which uses a modified hybrid functional involving the generalized displacements and generalized tractions on the boundary and the lateral deflection in the domain as independent variables. The discretization process is based on the employment of the fundamental solutions of the static problem operator for the expression of the variables involved in the functional. The stiffness and mass matrices obtained for the dynamic model are frequency-independent, symmetric and positive definite and their computation involves bound…
Initial strain effects in multilayer composite laminates
2001
A boundary integral formulation for the analysis of stress fields induced in composite laminates by initial strains, such as may be due to temperature changes and moisture absorption is presented. The study is formulated on the basis of the theory of generalized orthotropic thermo-elasticity and the governing integral equations are directly deduced through the generalized reciprocity theorem. A suitable expression of the problem fundamental solutions is given for use in computations. The resulting linear system of algebraic equations is obtained by the boundary element method and stress interlaminar distributions in the boundary-layer are calculated by using a boundary only discretization. …
BIEM-based variational principles for elastoplasticity with unilateral contact boundary conditions
1998
The structural step problem for elastic-plastic internal-variable materials is addressed in the presence of frictionless unilateral contact conditions. Basing on the BIEM (boundary integral equation method) and making use of deformation-theory plasticity (through the backward-difference method of computational plasticity), two variational principles are shown to characterize the solution to the step problem: one is a stationarity principle having as unknowns all the problem variables, the other is a saddle-point principle having as unknowns the increments of the boundary tractions and displacements, along with the plastic strain increments in the domain. The discretization by boundary and i…
Discrete-mathematical approach to formal description of measurement procedure
1996
The discrete-mathematical model of measurement procedure is developed for facilitating the description of measurements in both quantitative and qualitative scales. On the basis of this model the Measurement Problem is formulated. It is shown that the problem can be considered, in the general case, as one of the discrete optimization problems. The suggested approach brings closer the concepts of a computing algorithm and measurement procedure so that it permits the application of similar tools for the analysis and development of both of them.
A Mesh-free Particle Method for Transient Full-wave Simulation
2007
A mesh-free particle method is presented for electromagnetic (EM) transient simulation. The basic idea is to obtain numerical solutions for the partial differential equations describing the EM problem in time domain, by using a set of particles, considered as spatial interpolation points of the field variables, arbitrarily placed in the problem domain and by avoiding the use of a regular mesh. Irregular problems geometry with diffused non-homogeneous media can be modeled only with an initial set of arbitrarily distributed particles. The time dependence is accounted for with an explicit finite difference scheme. Moreover the particle discretization can be improved during the process time ste…
Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.
2015
This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
A new solver for incompressible non-isothermal flows in natural and mixed convection over unstructured grids
2022
Abstract In the present paper we propose a new numerical methodology for the solution of 2D non-isothermal incompressible flows for natural and mixed convection in irregular geometries. The governing equations are the Incompressible Navier-Stokes Equations and the Energy Conservation Equation. Fluid velocity and temperature are coupled in the buoyancy term of the momentum equations according to the Oberbeck–Boussinesq approximation. The governing equations are discretized over unstructured triangular meshes satisfying the Delaunay property. Thanks to the Oberbeck–Boussinesq hypothesis, the flow and energy problems are solved in an uncoupled way, and two fractional time step procedures are s…