Search results for "distribution function"
showing 10 items of 348 documents
Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS
2019
The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb −1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon–nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02) , (−1.84,0.91) , and (1.09,1.90) . The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations b…
Equilibrium properties of self-interacting neutrinos in the quasi-particle approach
2004
In this work a neutrino gas in equilibrium is studied both at T=0 and at finite temperature. Neutrinos are treated as massive Dirac quasi-particles with two generations. We include self-interactions among the neutrinos via neutral currents, as well as the interaction with a background of matter. To obtain the equilibrium properties we use Wigner function techniques. To account for corrections beyond the Hartree approximation, we also introduce correlation functions. We prove that, under the quasi-particle approximation, these correlation functions can be expressed as products of Wigner functions. We analyze the main properties of the neutrino eigenmodes in the medium, such as effective mass…
Relativistic Wigner function approach to neutrino propagation in matter
1999
In this work we study the propagation of massive Dirac neutrinos in matter with flavor mixing, using statistical techniques based on Relativistic Wigner Functions. First, we consider neutrinos in equilibrium within the Hartree approximation, and obtain the corresponding relativistic dispersion relations and effective masses. After this, we analyze the same system out of equilibrium. We verify that, under the appropiate physical conditions, the well known equations for the MSW effect are recovered. The techniques we used here appear as an alternative to describe neutrino properties and transport equations in a consistent way.
Multi-Scale Modeling of Quantum Semiconductor Devices
2006
This review is concerned with three classes of quantum semiconductor equations: Schrodinger models, Wigner models, and fluid-type models. For each of these classes, some phenomena on various time and length scales are presented and the connections between micro-scale and macro-scale models are explained. We discuss Schrodinger-Poisson systems for the simulation of quantum waveguides and illustrate the importance of using open boundary conditions. We present Wigner-based semiconductor models and sketch their mathematical analysis. In particular we discuss the Wigner-Poisson-Focker-Planck system, which is the starting point of deriving subsequently the viscous quantum hydrodynamic model. Furt…
Small Angle Neutron Scattering from Systems of Interacting Particles. Modelling High Density Micellar Fluids
1992
The need for analytical solutions of the scattering equation for complex situations (polydisperse samples, scattering from non centrosymmetrical particles, etc.) has somehow escaped the attention of the workers in the Small Angle Scattering field, although it is clear that, at the level of sophistication today available for the experiments, a more rigorous approach is necessary. For quite a few years our group has been actively engaged in SANS research and has occasionally devoted its attention to develop alternative ways of data analysis based on more rigorous solutions of the scattering equation.
Agreement of Neutrino Deep Inelastic Scattering Data with Global Fits of Parton Distributions
2013
The compatibility of neutrino-nucleus deep inelastic scattering data within the universal, factorizable nuclear parton distribution functions has been studied independently by several groups in the past few years. The conclusions are contradictory, ranging from a violation of the universality up to a good agreement, most of the controversy originating from the use of the neutrino-nucleus data from the NuTeV Collaboration. Here, we pay attention to non-negligible differences in the absolute normalization between different neutrino data sets. We find that such variations are large enough to prevent a tensionless fit to all data simultaneously and could therefore misleadingly point towards non…
Parameter Degeneracy in Flavor-Dependent Reconstruction of Supernova Neutrino Fluxes
2008
We reexamine the possibility of reconstructing the initial fluxes of supernova neutrinos emitted in a future core-collapse galactic supernova explosion and detected in a Megaton-sized water Cherenkov detector. A novel key element in our method is the inclusion, in addition to the total and the average energies of each neutrino species, of a "pinching" parameter characterizing the width of the distribution as a fit parameter. We uncover in this case a continuous degeneracy in the reconstructed parameters of supernova neutrino fluxes at the neutrinosphere. We analyze in detail the features of this degeneracy and show how it occurs irrespective of the parametrization used for the distribution …
Erratum to: Moments of polarized parton distribution functions
2003
EPPS16 : Bringing nuclear PDFs to the LHC era
2018
We report on EPPS16, the first global analysis of nuclear parton distribution functions (nPDFs) to include LHC data. Also for the first time, a full flavour dependence of nPDFs is allowed. While the included Z and W data are found to have insufficient statistics to yield stringent constraints, the CMS 5.02 TeV proton-lead dijet data prove crucial in setting the shape of nuclear gluon modifications. With these and other observables being measured in proton-lead runs, we are experiencing a shift of nPDFs to the LHC precision era.
nPDF constraints from the large hadron electron collider
2016
An updated analysis regarding the expected nuclear PDF constraints from the future Large Hadron Electron Collider (LHeC) experiment is presented. The new study is based on a more flexible small-$x$ parametrization which provides less biased uncertainty estimates in the region where there are currently no data constraints. The effect of the LHeC is quantified by directly including a sample of pseudodata according to the expected precision of this planned experiment. As a result, a significant reduction of the small-$x$ uncertainties in sea quarks and gluons is observed.