Search results for "docking"
showing 10 items of 299 documents
Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking
2015
Apigenin is a common dietary flavonoid with considerable cytotoxic activity in vitro and in vivo. Despite many mechanistic studies, less is known about resistance factors hampering apigenin's activity. We investigated the ATP-binding cassette (ABC) transporters BCRP/ABCG2, P-glycoprotein/ABCB1 and its close relative ABCB5. Multidrug-resistant cells overexpressing these ABC transporters were not cross-resistant toward apigenin. Moreover, apigenin inhibited not only P-glycoprotein but also BCRP by increasing cellular uptake of doxorubicin and synergistic inhibition of cell viability in combination with doxorubicin or docetaxel in multidrug-resistant cells. To perform in silico molecular docki…
Mapping the network of pathways of CO diffusion in myoglobin.
2010
The pathways of diffusion of a CO molecule inside a myoglobin protein and toward the solvent are investigated. Specifically, the three-dimensional potential of mean force (PMF or free energy) of the CO molecule position inside the protein is calculated by using the single-sweep method in concert with fully resolved atomistic simulations in explicit solvent. The results are interpreted under the assumption that the diffusion of the ligand can be modeled as a navigation on the PMF in which the ligand hops between the PMF local minima following the minimum free energy paths (MFEPs) with rates set by the free energy barriers that need to be crossed. Here, all the local minima of the PMF, the MF…
Synthesis, In Vitro and In Silico Analysis of New Oleanolic Acid and Lupeol Derivatives against Leukemia Cell Lines: Involvement of the NF-κB Pathway
2022
Oleanolic acid (OA) and Lupeol (LU) belong to the class of natural triterpenes and are endowed with a wide range of biological activities, including cytotoxicity toward several cancer cell lines. In this context, we investigated a set of compounds obtained from the two natural precursors for the cytotoxicity against leukemia HL60 cells and the multidrug-resistant (MDR) variant HL60R. Six new semi-synthetic triterpenes have been synthetized, fully characterized, and were investigated together with other triterpenes compounds for their pharmacological mechanism of action. The interaction of the more cytotoxic compounds with the nuclear factor kappa B (NF-κB) pathway has been also evalua…
Kinetic and thermodynamic insights into interaction of erlotinib with epidermal growth factor receptor: Surface plasmon resonance and molecular docki…
2020
Abstract Epidermal growth factor receptor (EGFR) plays an important role in cell proliferation at non-small cell lung cancer (NSCLC). Therefore, targeted therapy of cancer via this kind of receptor is highly interested. Small molecule drugs such as erlotinib and gefitinib inhibit EGFR tyrosine kinase and thus suppress cell proliferation. At this paper, erlotinib interaction with EGFR on the cell surface was studied via surface plasmon resonance (SPR) and molecular docking methods. Kinetic parameters indicated that erlotinib affinity toward EGFR was increased through increment of temperature. The thermodynamic analysis showed that van der Waals and hydrogen binding forces play a major role i…
A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells
2021
New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC13…
Polyketides from the marine-derived fungus Aspergillus falconensis: In silico and in vitro cytotoxicity studies.
2020
Abstract Fermentation of the marine-derived fungus Aspergillus falconensis, isolated from sediment collected from the Red Sea, Egypt on solid rice medium containing 3.5% NaCl yielded a new dibenzoxepin derivative (1) and a new natural isocoumarin (2) along with six known compounds (3–8). Changes in the metabolic profile of the fungus were induced by replacing NaCl with 3.5% (NH4)2SO4 that resulted in the accumulation of three further known compounds (9–11), which were not detected when the fungus was cultivated in the presence of NaCl. The structures of the new compounds were elucidated by HRESIMS and 1D/2D NMR as well as by comparison with the literature. Molecular docking was conducted fo…
Computational Evaluation and In Vitro Validation of New Epidermal Growth Factor Receptor Inhibitors
2020
Background:The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma.Methods:We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,46…
Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE
2018
Abstract: In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8CTE, fused benzo[b]thiophenes and ,'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20m). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-to…
Synthesis and biological evaluation of a D-ring-contracted analogue of lamellarin D
2017
A D-ring contracted analogue of the strongly cytotoxic marine pyrrole alkaloid lamellarin D was synthesized and investigated for its antiproliferative action towards a wild type and a multidrug resistant (MDR) cancer cell line. The compound was found to inhibit tumor cell growth at submicromolar concentrations and showed a lower relative resistance in the MDR cell line than the antitumor drug camptothecin to which lamellarin D shows cross resistance and with which lamellarin D shares the same binding site.
Comparative analysis of virtual screening approaches in the search for novel EphA2 receptor antagonists
2015
The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of…