Search results for "docking"
showing 10 items of 299 documents
A MULTI-LEVEL FUNCTIONAL STUDY OF A SNAP25 AT-RISK VARIANT FOR BIPOLAR DISORDER AND SCHIZOPHRENIA
2019
Background The synaptosomal associated protein SNAP25 is crucial for synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions. We recently identified a promoter variant in SNAP25, rs6039769, associated with bipolar disorder and gene expression in prefrontal cortex. Methods Here, we performed a genetic association study using this variation on two independent cohorts of 288 and 173 subjects with schizophrenia and 315 unaffected control individuals. We replicated our results using data from the schizophrenia group of the Psychiatric Genomics Consortium (PGC). Functional consequences combined both in vitro and post-mortem gene expression analysis on 30 p…
Mapping CO diffusion paths in Myoglobin with the Single Sweep Method
2010
The pathways of diffusion and escape of a CO molecule inside and out a myoglobin protein are investigated. Specifically, the three-dimensional potential of mean force (PMF or free energy) of the CO molecule position inside the protein is calculated by using the single-sweep method in concert with fully resolved atomistic simulations in explicit solvent.The results are interpreted under the assumption that the diffusion of the ligand can be modeled as a navigation on the PMF in which the ligand hops between the PMF local minima following the minimum free energy paths (MFEPs) with rates set by the free energy barriers that need to be crossed. We calculate all these quantities --local minima, …
Cytotoxicity and antimitotic activity of Rhinella schneideri and Rhinella marina venoms.
2019
Abstract Ethnopharmacological relevance Rhinella schneideri and Rhinella marina are toad venoms distributed in different parts of the world, including Brazil, Columbia and amazon. Venoms extracted from different species have many clinical applications such as antimicrobial cardiotonics and treatment of cancer. Aim of the study; In this study, we aim to investigate the effect of venoms extracted from R. schneideri and R. marina on cancer cells and verify possible mechanism of action. Material and method Cytotoxicity analyses was performed using the resazurin reduction assay, where different concentrations of venoms were tested against sensitive CCRF-CEM and P-gp overexpressing ADR/CEM5000 le…
Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells
2015
Abstract Ethnopharmacological relevance Rosmarinic acid (RA), a major hydrosoluble bioactive compound found in the Chinese medicinal herb, Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine to treat various diseases, including cancer. However, the mechanisms have not been fully elucidated. Aim of the study Guided by microarray hybridization and Ingenuity Pathway Analysis, we identified modes of action of rosmarinic acid (RA) isolated from S. miltiorrhiza on acute lymphoblastic leukemia cells. Materials and methods Microarray data were verified by independent methods: Real-time RT-PCR (mRNA expression), resazurin assay (cytotoxicity of RA towards parental CCRF-CEM…
Proline-Based Allosteric Inhibitors of Zika and Dengue Virus NS2B/NS3 Proteases
2019
The NS2B/NS3 serine proteases of the Zika and Dengue flaviviruses are attractive targets for the development of antiviral drugs. We report the synthesis and evaluation of a new, proline-based compound class that displays allosteric inhibition of both proteases. The structural features relevant for protease binding and inhibition were determined to establish them as new lead compounds for flaviviral inhibitors. Based on our structure-activity relationship studies, the molecules were further optimized, leading to inhibitors with submicromolar IC50 values and improved lipophilic ligand efficiency. The allosteric binding site in the proteases was probed using mutagenesis and covalent modificati…
Development of Novel Selective Peptidomimetics Containing a Boronic Acid Moiety, Targeting the 20S Proteasome as Anticancer Agents
2014
This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT-L activity of 20S proteasome. Compounds bearing a β-alanine residue at the P2 position were the most active, that is, 3-ethylphenylamino and 4-methoxyphenylamino (R)-1-{3-[4-(substituted)-2-oxopyridin-1(2H)-yl]propanamido}-3-methylbutylboronic acids (3 c and 3 d, respectively), and these derivatives showed inhibition constants (Ki ) of 17 and 20 nM, respectively. In addition, they co-inhibited post glutamyl peptide hydrolase act…
Optimization of peptidomimetic boronates bearing a P3 bicyclic scaffold as proteasome inhibitors
2014
Abstract A new series of pseudopeptide boronate proteasome inhibitors (2–3) was developed, through optimization of our previously described analogs of bortezomib, bearing a bicyclic 1,6-naphthyridin-5(6H)-one scaffold as P3 fragment (1). The biological evaluation on human 20S proteasome displayed a promising inhibition profile, especially for compounds bearing a P2 ethylene fragment, which exhibited Ki values in the nanomolar range for the ChT-L activity (e.g. 2a, Ki = 0.057 μM) and considerable selectivity for proteasome over bovine pancreatic α-chymotrypsin. Docking experiments into the yeast 20S proteasome revealed that the ligands are accommodated predominantly into the ChT-L site and t…
Immunoproteasome and Non-Covalent Inhibition: Exploration by Advanced Molecular Dynamics and Docking Methods
2021
The selective inhibition of immunoproteasome is a valuable strategy to treat autoimmune, inflammatory diseases, and hematologic malignancies. Recently, a new series of amide derivatives as non-covalent inhibitors of the β1i subunit with Ki values in the low/submicromolar ranges have been identified. Here, we investigated the binding mechanism of the most potent and selective inhibitor, N-benzyl-2-(2-oxopyridin-1(2H)-yl)propanamide (1), to elucidate the steps from the ligand entrance into the binding pocket to the ligand-induced conformational changes. We carried out a total of 400 ns of MD-binding analyses, followed by 200 ns of plain MD. The trajectories clustering allowed identifying thre…
Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase
2016
Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (I…
A potential solution to avoid overdose of mixed drugs in the event of Covid-19: Nanomedicine at the heart of the Covid-19 pandemic.
2021
Since 2020, the world is facing the first global pandemic of 21st century. Among all the solutions proposed to treat this new strain of coronavirus, named SARS-CoV-2, the vaccine seems a promising way but the delays are too long to be implemented quickly. In the emergency, a dual therapy has shown its effectiveness but has also provoked a set of debates around the dangerousness of a particular molecule, hydroxychloroquine. In particular, the doses to be delivered, according to the studies, were well beyond the acceptable doses to support the treatment without side effects. We propose here to use all the advantages of nanovectorization to address this question of concentration. Using quantum…