Search results for "dynamical system"
showing 10 items of 523 documents
Protein crystallization: universal thermodynamic vs. specific effects of PEG
2008
The interest of nucleation of protein crystals and aggregates (including oligomerization) spans from basic physics theory all the way to biophysics, nanophysics, clinical sciences, biotechnologies, food technologies and polymer–solvent interactions. Understanding nucleation within a theoretical framework capable of providing quantitative predictions and control of nucleation rates, or even the very occurrence of crystallization, is a long-sought goal of remarkable relevance to each of the above fields. A large amount of work has been aimed at such goal, but success has been so far rather limited. Work at our laboratory has more recently highlighted a direct link between nucleation rates and…
Chapter III Phase transitions at surfaces
1995
Abstract The statistical mechanics of phase transitions is briefly reviewed, with an emphasis on surfaces. Flat surfaces of crystals may act as a substrate for adsorption of two-dimensional (d=2) monolayers and multilayers, offering thus the possibility to study phase transitions in restricted dimensionality. Critical phenomena for special universality classes can thus be investigated which have no counterpart in d=3. Also phase transitions can occur that are in a sense “in between” different dimensionalities (e.g., multilayer adsorption and wetting phenomena are transitions in between two and three dimensions, while adsorption of monolayers on stepped surfaces allows phenomena in between o…
Stochastic seismic analysis of hydrodynamic pressure in dam reservoir systems
2002
Hydrodynamic seismic-induced pressure requires careful consideration in the aseismic design of dams. Effects induced by earthquake excitation may cause many-fold increments of hydrostatic pressure. In this study earthquake excitation has been modelled by means of random process theory obtaining the response statistics of a dam-reservoir dynamical system. The analysis has been conducted assuming a rigid retaining wall of the reservoir and dissipative fluid. Copyright © 2002 John Wiley & Sons, Ltd.
An operator-like description of love affairs
2010
We adopt the so--called \emph{occupation number representation}, originally used in quantum mechanics and recently considered in the description of stock markets, in the analysis of the dynamics of love relations. We start with a simple model, involving two actors (Alice and Bob): in the linear case we obtain periodic dynamics, whereas in the nonlinear regime either periodic or quasiperiodic solutions are found. Then we extend the model to a love triangle involving Alice, Bob and a third actress, Carla. Interesting features appear, and in particular we find analytical conditions for the linear model of love triangle to have periodic or quasiperiodic solutions. Numerical solutions are exhibi…
Konishi form factor at three loops in N=4 supersymmetric Yang-Mills theory
2017
We present the first results on the third order corrections to on-shell form factor (FF) of the Konishi operator in $\mathcal{N}=4$ supersymmetric Yang-Mills theory using Feynman diagrammatic approach in modified dimensional reduction ($\overline{DR}$) scheme. We show that it satisfies the KG equation in $\overline{DR}$ scheme while the result obtained in four dimensional helicity (FDH) scheme needs to be suitably modified not only to satisfy the KG equation but also to get the correct ultraviolet (UV) anomalous dimensions. We find that the cusp, soft and collinear anomalous dimensions obtained to third order are same as those of the FF of the half-BPS operator confirming the universality o…
Anharmonic effects on the dynamic behavior’s of Klein Gordon model’s
2021
Abstract This work completes and extends the Ref. Tchakoutio Nguetcho et al. (2017), in which we have focused our attention only on the dynamic behavior of gap soliton solutions of the anharmonic Klein-Gordon model immersed in a parameterized on-site substrate potential. We expand our work now inside the permissible frequency band. These considerations have crucial effects on the response of nonlinear excitations that can propagate along this model. Moreover, working in the allowed frequency band is not only interesting from a physical point of view, it also provides an extraordinary mathematical model, a new class of differential equations possessing vital parameters and vertical singular …
Subvisible cirrus clouds – a dynamical system approach
2016
Abstract. Ice clouds, so-called cirrus clouds, occur very frequently in the tropopause region. A special class are subvisible cirrus clouds with an optical depth lower than 0.03. Obviously, the ice crystal number concentration of these clouds is very low. The dominant pathway for these clouds is not known well. It is often assumed that heterogeneous nucleation at solid aerosol particles is the preferred mechanism although homogeneous freezing of aqueous solution droplets might be possible. For investigating subvisible cirrus clouds as formed by homogeneous freezing we develop a simple analytical cloud model from first principles; the model consists of a three dimensional set of ordinary dif…
Stability and Chaos
2010
In this chapter we study a larger class of dynamical systems that include but go beyond Hamiltonian systems. We are interested, on the one hand, in dissipative systems, i.e. systems that lose energy through frictional forces or into which energy is fed from exterior sources, and, on the other hand, in discrete, or discretized, systems such as those generated by studying flows by means of the Poincare mapping. The occurence of dissipation implies that the system is coupled to other, external systems, in a controllable manner. The strength of such couplings appears in the set of solutions, usually in the form of parameters. If these parameters are varied it may happen that the flow undergoes …
Universal mechanism of spin relaxation in solids
2005
We consider relaxation of a rigid spin cluster in an elastic medium in the presence of the magnetic field. Universal simple expression for spin-phonon matrix elements due to local rotations of the lattice is derived. The equivalence of the lattice frame and the laboratory frame approaches is established. For spin Hamiltonians with strong uniaxial anisotropy the field dependence of the transition rates due to rotations is analytically calculated and its universality is demonstrated. The role of time reversal symmetry in spin-phonon transitions has been elucidated. The theory provides lower bound on the decoherence of any spin-based solid-state qubit.
Universality of Many-Body States in Rotating Bose and Fermi Systems
2008
We propose a universal transformation from a many-boson state to a corresponding many-fermion state in the lowest Landau level approximation of rotating many-body systems, inspired by the Laughlin wave function and by the Jain composite-fermion construction. We employ the exact-diagonalization technique for finding the many-body states. The overlap between the transformed boson ground state and the true fermion ground state is calculated in order to measure the quality of the transformation. For very small and high angular momenta, the overlap is typically above 90%. For intermediate angular momenta, mixing between states complicates the picture and leads to small ground-state overlaps at s…