Search results for "ear-infrared spectroscopy"
showing 10 items of 139 documents
Near-infrared photochemistry assisted by upconverting nanoparticles
2019
Abstract Upconverting nanoparticles (UCNPs) combine unique optical and imaging properties with high chemical and biological stability. The capability of UCNPs to emit visible light upon near-infrared light excitation, in an anti-Stokes fashion, is extremely attractive for the design of light-responsive nanomaterials whose action can be controlled spatially and temporally. In this chapter, we analyze the most promising approaches developed so far to functionalize the surface of UCNPs with photoactivatable organic and inorganic molecular systems. In particular, we emphasize the key advances in the design of upconverting nanosystems that exploit bioactive transition metal complexes.
Quality Control of Agrochemical Formulations by Diffuse Reflectance near Infrared Spectrometry
2008
A near infrared (NIR)-based methodology has been developed for the determination of 11 pesticides in commercially available formulations. This solvent free, fast and environmentally friendly method was based on the direct measurement of the diffuse reflectance spectra of solid samples, a hierarchical cluster classification and the use of multivariate calibration models to determine each considered active principle in agrochemicals. The proposed partial least squares (PLS) models used for quantification of each compound were built from specific calibration sets composed of nine spectra corresponding to triplicate measurements of a single well characterised commercial sample and two addition…
Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water
2014
Abstract We report the investigation of luminescent nanoparticles produced by ns pulsed Nd:YAG laser ablation of silicon in water. Combined characterization by AFM and IR techniques proves that these nanoparticles have a mean size of ∼3 nm and a core–shell structure consisting of a Si-nanocrystal surrounded by an oxide layer. Time resolved luminescence spectra evidence visible and UV emissions; a band around 1.9 eV originates from Si-nanocrystals, while two bands centered at 2.7 eV and 4.4 eV are associated with oxygen deficient centers in the SiO 2 shell.
Application of silicon-based camera for measurement of non-homogeneous thermal field on realistic specimen surface
2019
Abstract The high-cost low-resolution infrared cameras operating in middle infrared spectral ranges are widely used to detect the thermal fields. In this study, a low-cost high-resolution silicon-based sensor camera operating in near infrared spectral ranges is used to perform the observation of the thermal fields on the realistic steel specimen surface. In near-infrared spectral ranges, a small temperature variation led to a large modification in the sensor illumination, inducing acquired images with over saturation or poor dynamic range of gray levels. To address this problem, an algorithm was used to precisely adjust the exposure time to acquire images with constant gray level whatever t…
Variable selection for the determination of total polar materials in fried oils by near infrared spectroscopy
2018
Total polar materials (TPM) content is considered as the best indicator and the most common parameter to check the quality of deep-frying oils. The development of simpler and quicker analytical techniques than the available methods to monitor oil quality in restaurants and fried food outlets is an important topic related to the human health. This paper reports a comparison of the variable selection of near infrared (NIR) spectra by multiple linear regression (MLR-NIR) with partial least squares (PLS-NIR) models for the quantification of TPM in fried vegetable oils. The use of PLS-NIR offers an alternative in laboratory bench equipment for the determination of TPM in oils employed for fryin…
2017
Two cationic Ir(III) complexes bearing 2-phenylpyridinato cyclometalating ligands and bithiazole-type ancillary ligands have been synthesized and optoelectronically characterised. These emitters exhibit unusually deep red-to-near-infrared emission at room temperature, thereby rendering them as attractive emitters in solution-processed light emitting electrochemical cell (LEEC) electroluminescent devices.
Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications
2014
This paper presents the potential of silicon germanium waveguides in the nonlinear conversion of light from mid-infrared wavelengths to the telecom band utilizing four-wave mixing. Design aspects and first characterization results of fabricated devices are presented.
Direct Analysis of Samples
2012
Demonstration of remote optical measurement configuration that correlates to glucose concentration in blood
2010
An optical approach allowing the extraction and the separation of remote vibration sources has recently been proposed. The approach has also been applied for medical related applications as blood pressure and heart beats monitoring. In this paper we demonstrate its capability to monitor glucose concentration in blood stream. The technique is based on the tracking of temporal changes of reflected secondary speckle produced in human skin (wrist) when being illuminated by a laser beam. A temporal change in skin’s vibration profile generated due to blood pulsation is analyzed for estimating the glucose concentration. Experimental tests that were carried out in order to verify the proposed appro…
Demultiplexing Visible and Near-Infrared Information in Single-Sensor Multispectral Imaging
2016
In this paper, we study a single-sensor imaging system that uses a multispectral filter array to spectrally sample the scene. Our system captures information in both visible and near-infrared bands of the electromagnetic spectrum. Due to manufacturing limitations, the visible filters in this system also transmit the NIR radiation. Similarly, visible light is transmitted by the NIR filter, leading to inaccurate mixed spectral measurements. We present an algorithm that resolves this issue by separating NIR and visible information. Our method achieves this goal by exploiting the correlation of multispectral images in both spatial and spectral domains. Simulation results show that the mean squa…