Search results for "ectotherm"

showing 10 items of 31 documents

On the thermodynamic origin of metabolic scaling

2018

The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…

0106 biological sciences0301 basic medicineFOS: Physical scienceslcsh:Medicine92B05010603 evolutionary biology01 natural sciencesPower lawArticle03 medical and health sciencesFractalPhysics - Biological PhysicsStatistical physicslcsh:ScienceQuantitative Biology - Populations and EvolutionAdditive modelScalingMathematicsMultidisciplinarylcsh:RPopulations and Evolution (q-bio.PE)Universality (dynamical systems)030104 developmental biologyBiological Physics (physics.bio-ph)13. Climate actionFOS: Biological sciencesEctothermBasal metabolic rateExponentlcsh:QScientific Reports
researchProduct

Phenological and intrinsic predictors of mite and haemacoccidian infection dynamics in a Mediterranean community of lizards

2021

Ectotherms are vulnerable to environmental changes and their parasites are biological health indicators. Thus, parasite load in ectotherms is expected to show a marked phenology. This study investigates temporal host–parasite dynamics in a lizard community in Eastern Spain during an entire annual activity period. The hosts investigated were Acanthodactylus erythrurus, Psammodromus algirus and Psammodromus edwardsianus, three lizard species coexisting in a mixed habitat of forests and dunes, providing a range of body sizes, ecological requirements and life history traits. Habitat and climate were considered as potential environmental predictors of parasite abundance, while size, body conditi…

0106 biological sciences0301 basic medicineMaleMite InfestationsRange (biology)ForestsParasitemia010603 evolutionary biology01 natural sciencesParasite loadParasite LoadLife history theory03 medical and health scienceshost–parasite dynamicsAbundance (ecology)Sandbiology.animalLacertidaeAnimalsEcological interactionsEcosystemAcanthodactylus erythrurusbiologyLizardEcologyCoccidiosisLizardsbiology.organism_classificationCoccidia030104 developmental biologyInfectious DiseasesSpainEctothermLinear ModelsAnimal Science and ZoologyParasitologyFemaleLacertidaeparasite phenologyResearch ArticleIberian PeninsulaParasitology
researchProduct

Response to formal comment on Myhrvold (2016) submitted by Griebeler and Werner (2017)

2018

In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual’s ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) …

0106 biological sciences0301 basic medicineMetabolic AnalysisPhysiologylcsh:MedicineAnimal Phylogenetics01 natural sciencesDinosaursBody TemperatureExtant taxonOrnithologyMaximum gainMedicine and Health SciencesGrowth rateSauropsidalcsh:ScienceArchosauriaData ManagementMammalsMultidisciplinarybiologyVertebrateEukaryotaPrehistoric AnimalsThermoregulationPhylogeneticsBioassays and Physiological AnalysisPhysiological ParametersEctothermVertebratesRegression AnalysisComputer and Information SciencesVertebrate PaleontologyZoologyResearch and Analysis Methods010603 evolutionary biologyFormal CommentBirds03 medical and health sciencesbiology.animalBasal Metabolic Rate MeasurementAnimalsAnimal PhysiologyEvolutionary SystematicsPaleozoologyTaxonomyEvolutionary Biologylcsh:ROrganismsBiology and Life SciencesPaleontologyReptilesbiology.organism_classificationBird Physiology030104 developmental biologyAmniotesEarth Scienceslcsh:QAllometryPaleobiologyZoologyPLoS ONE
researchProduct

Dinosaur Metabolism and the Allometry of Maximum Growth Rate

2016

In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual’s ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) …

0106 biological sciences0301 basic medicineMetabolic stateMetabolic AnalysisPhysiologylcsh:MedicineAnimal Phylogenetics01 natural sciencesBody TemperatureDinosaursMathematical and Statistical TechniquesExtant taxonMedicine and Health SciencesBody SizeGrowth ratelcsh:Sciencemedia_commonArchosauriaData ManagementMammalsMultidisciplinaryEcologyFossilsEukaryotaRegression analysisPrehistoric AnimalshumanitiesCurve FittingPhylogeneticsBioassays and Physiological AnalysisPhysiological ParametersEctothermPhysical SciencesVertebratesRegression AnalysisStatistics (Mathematics)Research ArticleComputer and Information Sciencesmedia_common.quotation_subjectVertebrate PaleontologyBiologyResearch and Analysis Methods010603 evolutionary biologyMarsupialsFormal CommentBirds03 medical and health sciencesBasal Metabolic Rate MeasurementAnimalsEvolutionary SystematicsStatistical MethodsPaleozoologyTaxonomyEvolutionary BiologyVariableslcsh:ROrganismsReptilesBiology and Life SciencesPaleontology030104 developmental biologyEvolutionary biologyBasal metabolic rateAmniotesEarth Scienceslcsh:QAllometryPaleobiologyEnergy MetabolismZoologyMathematical FunctionsMathematicsPLoS ONE
researchProduct

How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile

2017

1.Organisms from temperate zones are exposed to seasonal changes and must be able to cope with a wide range of climatic conditions. Especially ectotherms, including insects, are at risk to desiccate under dry and warm conditions, the more so given the changing climate. 2.To adjust to current conditions, organisms acclimate through changes in physiology, morphology and/or behaviour. Insects protect themselves against desiccation through a layer of cuticular hydrocarbons (CHC) on their body surface. Hence, acclimation may also affect the CHC profile, changing their waterproofing capacity under different climatic conditions. 3.Here, we investigated the acclimation response of two Temnothorax a…

0106 biological sciences0301 basic medicinePhenotypic plasticityTemnothoraxbiologyEcologyRange (biology)biology.organism_classification010603 evolutionary biology01 natural sciencesAcclimatizationBeneficial acclimation hypothesis03 medical and health sciences030104 developmental biologyEctothermTemperate climateDesiccationEcology Evolution Behavior and SystematicsFunctional Ecology
researchProduct

Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual matur…

2017

Abstract Ectothermic and endothermic vertebrates differ not only in their source of body temperature (environment vs. metabolism), but also in growth patterns, in timing of sexual maturation within life, and energy intake functions. Here, we present a mathematical model applicable to ectothermic and endothermic vertebrates. It is designed to test whether differences in the timing of sexual maturation within an animal's life (age at which sexual maturity is reached vs. longevity) together with its ontogenetic gain in body mass (growth curve) can predict the energy intake throughout the animal's life (food intake curve) and can explain differences in energy partitioning (between growth, repro…

0106 biological sciences0301 basic medicineStatistics and ProbabilityOntogenymedia_common.quotation_subjectZoologyGrowth010603 evolutionary biology01 natural sciencesEndothermic processGeneral Biochemistry Genetics and Molecular BiologyBody Mass IndexBody Temperature03 medical and health sciencesbiology.animalAnimalsSexual maturitySexual Maturationmedia_commonGeneral Immunology and MicrobiologybiologyApplied MathematicsLongevityVertebrateThermogenesisGeneral MedicineGrowth curve (biology)Models Theoretical030104 developmental biologyModeling and SimulationEctothermVertebratesReproductionEnergy IntakeGeneral Agricultural and Biological SciencesJournal of Theoretical Biology
researchProduct

Thermal variability during ectotherm egg incubation: A synthesis and framework.

2020

Natural populations of ectothermic oviparous vertebrates typically experience thermal variability in their incubation environment. Yet an overwhelming number of laboratory studies incubate animals under constant thermal conditions that cannot capture natural thermal variability. Here, we systematically searched for studies that incubated eggs of ectothermic vertebrates, including both fishes and herpetofauna, under thermally variable regimes. We ultimately developed a compendium of 66 studies that used thermally variable conditions for egg incubation. In this review, we qualitatively discuss key findings from literature in the compendium, including the phenotypic effects resulting from diff…

0106 biological sciences0301 basic medicineThermotoleranceFuture studiesPhysiologyFishesZoologyReptilesBiologyPerformance theory010603 evolutionary biology01 natural sciencesAmphibians03 medical and health sciences030104 developmental biologyEctothermGeneticsAnimalsAnimal Science and ZoologyOviparityMolecular BiologyIncubationEcology Evolution Behavior and SystematicsEgg incubationOvumJournal of experimental zoology. Part A, Ecological and integrative physiologyREFERENCES
researchProduct

Adaptation to environmental stress at different timescales

2020

Environments are changing rapidly, and to cope with these changes, organisms have to adapt. Adaptation can take many shapes and occur at different speeds, depending on the type of response, the trait, the population, and the environmental conditions. The biodiversity crisis that we are currently facing illustrates that numerous species and populations are not capable of adapting with sufficient speed to ongoing environmental changes. Here, we discuss current knowledge on the ability of animals and plants to adapt to environmental stress on different timescales, mainly focusing on thermal stress and ectotherms. We discuss within-generation responses that can be fast and induced within minute…

0106 biological sciences0301 basic medicineTime FactorsEnvironmental changeAcclimatizationClimate Changemedia_common.quotation_subjectPopulationBiodiversity010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyEpigenesis Genetic03 medical and health sciencesHistory and Philosophy of ScienceStress PhysiologicalevolutionAnimalsHumansEcosystemeducationEcosystemPlant Physiological Phenomenamedia_commoneducation.field_of_studybusiness.industryGeneral NeuroscienceEnvironmental resource managementEnvironmental ExposurePlants15. Life on landAdaptation Physiologicalenvironmental stress030104 developmental biology13. Climate actionEctothermplasticityTraitEnvironmental sciencePsychological resilienceAdaptationbusinesstrangenerational effects
researchProduct

Rapid adaptation to high temperatures in Chironomus riparius

2018

AbstractEffects of seasonal or daily temperature variation on fitness and physiology of ectothermic organisms and their ways to cope with such variations have been widely studied. However, the way multivoltines organisms cope with temperature variations from a generation to another is still not well understood and complex to identify. The aim of this study is to investigate whether the multivoltine midgeChironomus ripariusMeigen (1803) responds mainly via acclimation as predicted by current theories, or if rapid genetic adaptation is involved. To investigate this issue, a common garden approach has been applied. A mix of larvae from five European populations was raised in the laboratory at …

0106 biological sciences0301 basic medicineved/biology.organism_classification_rank.speciesZoologyacclimation010603 evolutionary biology01 natural sciencesChironomidaeAcclimatizationChironomidaeChironomidae ; climate ; acclimation ; temperature adaptation ; developmental temperature ; ectotherm03 medical and health sciencesddc:590temperature adaptationdevelopmental temperatureclimateectothermEcology Evolution Behavior and SystematicsNature and Landscape ConservationOriginal ResearchChironomus ripariusPhenotypic plasticityEcologybiologyved/biologyEcologyMortality rateVoltinismbiology.organism_classificationBiting030104 developmental biologyEctothermMidgeAdaptation
researchProduct

Multiple-stressor effects of warming and acidification on the embryonic development of an estuarine fiddler crab

2021

Made available in DSpace on 2021-06-25T10:56:04Z (GMT). No. of bitstreams: 0 Previous issue date: 2021-06-05 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Predicted effects of anthropogenic climate change on estuarine and coastal organisms are complex, and early life history stages of calcified ectotherms are amongst the most sensitive groups. Despite the importance of understanding their vulnerability, we lack information on the effects of multiple stressors on the embryonic development of estuarine and burrowing organisms, mainly mangrove-associated species. Here, we determined the combined effects of elevated temperature and decreased pH on the embryonic development of th…

0106 biological sciencesAbiotic component010504 meteorology & atmospheric sciencespH010604 marine biology & hydrobiologyEmbryogenesisEmbryosTemperatureZoologyEmbryonic StageVDP::Matematikk og Naturvitenskap: 400Aquatic ScienceBiologyOceanographyBurrowbiology.organism_classification01 natural sciencesFiddler crabCrustaceanCrustaceansSalinityEctothermClimate changeAbiotic factors0105 earth and related environmental sciences
researchProduct