Search results for "ef"

showing 10 items of 32085 documents

Correlative study of structural and optical properties of ZnSe under severe plastic deformation

2019

The effect of plastic deformation on the optical and structural properties of ZnSe crystals has been investigated. The optical properties have been monitored by cathodoluminescence measurements as a function of the deformation degree. Remarkable differences in the defect-related emissions from the most severely deformed areas have been encountered. Deformation of the crystal lattice of ZnSe, associated with slip phenomena, has been studied by means of Electron Backscattered Diffraction and micro-Raman spectroscopy. The relation between the deformation and the optical properties of the ZnSe crystals has been described.

010302 applied physicsDiffractionMaterials scienceFísica de materialesGeneral Physics and AstronomyPhysics::OpticsCathodoluminescence02 engineering and technologyCrystal structureSlip (materials science)Electron021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials Science0103 physical sciencesFísica del estado sólidoDeformation (engineering)Severe plastic deformationComposite material0210 nano-technologySpectroscopy
researchProduct

Low energy nano diffraction (LEND) – A versatile diffraction technique in SEM

2019

Abstract Electron diffraction is a powerful characterization method that is used across different fields and in different instruments. In particular, the power of transmission electron microscopy (TEM) largely relies on the capability to switch between imaging and diffraction mode enabling identification of crystalline phases and in-depth studies of crystal defects, to name only examples. In contrast, while diffraction techniques have found their way into the realm of scanning electron microscopy (SEM) in the form of electron backscatter diffraction and related techniques, on-axis transmission diffraction is still in its infancy. Here we present a simple but versatile setup that enables a ‘…

010302 applied physicsDiffractionMaterials scienceGrapheneScanning electron microscopebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionCharacterization (materials science)Electron diffractionlawTransmission electron microscopy0103 physical sciencesOptoelectronics0210 nano-technologybusinessInstrumentationElectron backscatter diffractionUltramicroscopy
researchProduct

Intrinsic nanostructures on the (001) surface of strontium titanate at low temperatures

2020

Atomically smooth (001) surfaces of SrTiO3 cut from the high-quality single crystals at two different miscut angles 0.9 and 7.0 deg between the real flat surfaces and crystallographic planes (001) were analyzed by means of the reflection high energy electron diffraction (RHEED) method from the room down to liquid helium temperatures. The diffraction patterns typical of the RHEED geometry close to ideal for a small miscut angle and those exhibiting distinct features of the specific periodicity associated with regular steps, which form due to the larger miscut angle, are presented. The surface symmetry and energetics were shown to impose differences in lattice parameters in parallel to a surf…

010302 applied physicsDiffractionMaterials scienceNanostructureReflection high-energy electron diffractionPhysics and Astronomy (miscellaneous)Condensed matter physicsGeneral Physics and Astronomy01 natural sciencesCondensed Matter::Materials Sciencesymbols.namesakechemistry.chemical_compoundchemistryElectron diffractionLattice (order)0103 physical sciencessymbolsStrontium titanate010306 general physicsRaman spectroscopySingle crystalLow Temperature Physics
researchProduct

Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties

2012

In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…

010302 applied physicsElectron densityPhotoluminescenceMaterials scienceCondensed matter physicsNanowirePhysics::Optics02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCondensed Matter::Materials ScienceAbsorption edge0103 physical sciencesPhotoluminescence excitation0210 nano-technologyAbsorption (electromagnetic radiation)Surface statesphysica status solidi c
researchProduct

Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics

2019

Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …

010302 applied physicsFerrofluidMaterials scienceField (physics)Field effect02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter::Soft Condensed MatterViscosityRheologyChemical physics0103 physical sciencesMagnetic nanoparticlesMulti-particle collision dynamics0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Coeval Cold Spray Additive Manufacturing Variances and Innovative Contributions

2017

Tremendous attention has been given to the cold spray process, even more today with the emergence of additive manufacturing, worldwide. Several inventions related to the cold spray technology have been patented for over a century and mostly since a couple of decades. But the cold spray technology knows a period of great innovations due to recent and current substantial explorations. Various technological solutions have been developed. The technical dimension, and particularly in terms of manufacturing method, has also always been a major genesis of progresses and novelties. This chapter is a technological survey of the cold spray additive manufacturing and reports variant methods and innova…

010302 applied physicsFlexibility (engineering)Engineeringbusiness.industryGas dynamic cold sprayThermal effect02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesManufacturing engineering0103 physical sciencesDeposition (phase transition)0210 nano-technologybusiness
researchProduct

PD characteristics at Square Shaped Voltages Applying Two Different Detecting Techniques

2016

Nowadays power electronic converters are widely used and the fast switching voltage fronts results in an increased stress on the insulation material and may cause a reduction of the HV systems reliability. Nonsinusoidal voltage waveform have influence on the partial discharges (PD) characteristics in insulating systems due to the increased harmonic content which causes problems mainly in electrical PD measurement setups. In fact, impulse voltages cause strong switching disturbances, which make it much more difficult to distinguish PD signals from noise. This work investigates the influence of repetitive steep pulses on different types of test objects exposed to square wave voltages applying…

010302 applied physicsFrequency responseEngineeringbusiness.industrySystem of measurementPartial Discharge measurements square waveformSquare waveImpulse (physics)01 natural sciencesSettore ING-IND/31 - ElettrotecnicaRise time0103 physical sciencesPartial dischargeElectronic engineeringWaveformbusinessVoltage
researchProduct

Partial discharges at different voltage waveshapes: Comparison between two different acquisition systems

2018

In modern HV apparatuses the wide use of electronic converters, increase the stress on the involved insulation systems and thus affect the reliability of the whole power grid. Additionally, such non-sinusoidal voltage shapes contain high gradient flanks that create problems in the detection of partial discharge (PD) activity. The aim of this paper is to discuss the methodology on how to suitably approach PD detection in insulation systems exposed to various voltage waveshapes in general by comparing two different measuring systems. The first one, equipped with a resonant PD decoupler, designed specifically for detection at typical power electronic waveshapes and the other one, based on an a…

010302 applied physicsFrequency responseMaterials sciencebusiness.industrySystem of measurement020208 electrical & electronic engineeringElectrical engineering02 engineering and technologyConverters01 natural sciencesPower (physics)Settore ING-IND/31 - ElettrotecnicaReliability (semiconductor)Partial discharge0103 physical sciencesPartial discharge0202 electrical engineering electronic engineering information engineeringmeasurementElectronicsElectrical and Electronic Engineeringbusinesssquare voltage waveformsVoltageIEEE Transactions on Dielectrics and Electrical Insulation
researchProduct

Application of the reduced I-V Blaesser’s characteristics in predicting PV modules and cells conversion efficiency in medium and high insolation cond…

2017

Abstract The article presents theoretical foundations of application of the reduced I-V Blaesser’s characteristics in predicting a photovoltaic cell/module (PV) efficiency, together with calculation procedures. A detailed analysis of the error of this transformation method of characteristics was carried out. Its practical application in predicting efficiency of operation of various PV cells and modules in medium and high insulation conditions was demonstrated. The practical suitability of the presented method in early detection of ageing phenomena, such as, for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the basis of the results of…

010302 applied physicsInsolationEnvironmental EngineeringChemistrybusiness.industryEcology (disciplines)Energy conversion efficiency02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesEnergy engineering0103 physical sciencesEnvironmental Chemistry0210 nano-technologyProcess engineeringbusinessEcological Chemistry and Engineering S
researchProduct

Topological insulator nanoribbon Josephson junctions: Evidence for size effects in transport properties

2020

We have used Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapor Deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices we observe a pronounced reduction of the Josephson critical current density $J_c$ by reducing the width of the junction, which in our case corresponds to the width of the nanoribbon. Because the topological surface states extend over the entire circumference of the nanoribbon, the superconducting transport associated to them is carried by modes on both the top and bottom surfaces of the nanoribbon. We show that the $J_c$ reduction as a function of the nanoribbons width can be accounted for by assuming that on…

010302 applied physicsJosephson effectSurface (mathematics)SuperconductivityMaterials scienceSettore FIS/03Condensed matter physicsCondensed Matter - SuperconductivityGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)Topological insulatorPhysical vapor depositionCondensed Matter::Superconductivity0103 physical sciencesElectrodePhysics::Chemical Physics0210 nano-technologyQuantumSurface states
researchProduct