Search results for "effective action"
showing 10 items of 34 documents
(F, G) -summed form of the QED effective action
2021
We conjecture that the proper-time series expansion of the one-loop effective Lagrangian of quantum electrodynamics can be summed in all terms containing the field-strength invariants $\mathcal{F}=\frac{1}{4}{F}_{\ensuremath{\mu}\ensuremath{\nu}}{F}^{\ensuremath{\mu}\ensuremath{\nu}}(x)$, $\mathcal{G}=\frac{1}{4}{\stackrel{\texttildelow{}}{F}}_{\ensuremath{\mu}\ensuremath{\nu}}{F}^{\ensuremath{\mu}\ensuremath{\nu}}(x)$, including those also possessing derivatives of the electromagnetic field strength. This partial resummation is exactly encapsulated in a factor with the same form as the Heisenberg-Euler Lagrangian density, except that now the electric and magnetic fields can depend arbitrar…
Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories
2017
We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. As a model system we consider O(N)-symmetric scalar field theories. We use classical-statistical real-time simulations, as well as a systematic 1/N expansion of the quantum (2PI) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions the …
Adiabatic regularization with a Yukawa interaction
2017
We extend the adiabatic regularization method for an expanding universe to include the Yukawa interaction between quantized Dirac fermions and a homogeneous background scalar field. We give explicit expressions for the renormalized expectation values of the stress-energy tensor $\langle T_{\mu\nu} \rangle$ and the bilinear $\langle \bar\psi\psi\rangle$ in a spatially flat FLRW spacetime. These are basic ingredients in the semiclassical field equations of fermionic matter in curved spacetime interacting with a background scalar field. The ultraviolet subtracting terms of the adiabatic regularization can be naturally interpreted as coming from appropriate counterterms of the background fields…
A note on scaling arguments in the effective average action formalism
2016
The effective average action (EAA) is a scale dependent effective action where a scale $k$ is introduced via an infrared regulator. The $k-$dependence of the EAA is governed by an exact flow equation to which one associates a boundary condition at a scale $\mu$. We show that the $\mu-$dependence of the EAA is controlled by an equation fully analogous to the Callan-Symanzik equation which allows to define scaling quantities straightforwardly. Particular attention is paid to composite operators which are introduced along with new sources. We discuss some simple solutions to the flow equation for composite operators and comment their implications in the case of a local potential approximation.
Solvable Models for radiating Black Holes and Area-preserving Diffeomorphisms
1995
Solvable theories of 2D dilaton gravity can be obtained from a Liouville theory by suitable field redefinitions. In this paper we propose a new framework to generate 2D dilaton gravity models which can also be exactly solved in the semiclassical approximation. Our approach is based on the recently introduced scheme to quantize massless scalar fields coupled to 2D gravity maintaining invariance under area-preserving diffeomorphisms and Weyl transformations. Starting from the CGHS model with the new effective action we reestablish the full diffeomorphism invariance by means of an adequate family of field redefinitions. The original theory is therefore mapped into a large family of solvable mo…
Bimetric Renormalization Group Flows in Quantum Einstein Gravity
2011
The formulation of an exact functional renormalization group equation for Quantum Einstein Gravity necessitates that the underlying effective average action depends on two metrics, a dynamical metric giving the vacuum expectation value of the quantum field, and a background metric supplying the coarse graining scale. The central requirement of "background independence" is met by leaving the background metric completely arbitrary. This bimetric structure entails that the effective average action may contain three classes of interactions: those built from the dynamical metric only, terms which are purely background, and those involving a mixture of both metrics. This work initiates the first …
Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity
2009
Investigations of Quantum Einstein Gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together …
Low energy Quantum Gravity from the Effective Average Action
2010
Within the effective average action approach to quantum gravity, we recover the low energy effective action as derived in the effective field theory framework, by studying the flow of possibly non-local form factors that appear in the curvature expansion of the effective average action. We restrict to the one-loop flow where progress can be made with the aid of the non-local heat kernel expansion. We discuss the possible physical implications of the scale dependent low energy effective action through the analysis of the quantum corrections to the Newtonian potential.
Low-energy scattering of extremal black holes by neutral matter
2002
We investigate the decay of a spherically symmetric near-extremal charged black hole, including back-reaction effects, in the near-horizon region. The non-locality of the effective action controlling this process allows and also forces us to introduce a complementary set of boundary conditions which permit to determine the asymptotic late time Hawking flux. The evaporation rate goes down exponentially and admits an infinite series expansion in Planck's constant. At leading order it is proportional to the total mass and the higher order terms involve higher order momenta of the classical stress-tensor. Moreover we use this late time behaviour to go beyond the near-horizon approximation and c…
Conformal and non-conformal symmetries in 2D dilaton gravity
1996
We introduce new extra symmetry transformations for generic 2D dilaton-gravity models. These symmetries are non-conformal but special linear combinations of them turn out to be the extra (conformal) symmetries of the CGHS model and the model with an exponential potential. We show that one of the non-conformal extra symmetries can be converted into a conformal one by means of adequate field redefinitions involving the metric and the derivatives of the dilaton. Finally, by expressing the Polyakov-Liouville effective action in terms of an auxiliary invariant metric, we construct one-loop models which maintain the extra symmetry of the classical action. © 1997 Elsevier Science B.V.