Search results for "elastoplasticity"
showing 7 items of 17 documents
Elastoplastic Damaging Model for Adhesive Anchor Systems. I: Theoretical Formulation and Numerical Implementation
2011
In this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, b…
Elastoplastic Damaging Model for Adhesive Anchor Systems. II: Numerical and Experimental Validation
2011
This paper presents the numerical and experimental validation of the analytical elastoplastic damaging model proposed in the companion paper (Part I). The validation was carried out by describing the pullout failure of epoxy adhesive anchors. Pullout tests were simulated numerically and performed experimentally. Several specimens made of a rebar embedded in a hardened concrete cylinder by means of polyester resin were tested. Conventional strain gauges and acoustic emission (AE) sensors were used to evaluate the structural response of the system and to monitor the onset and progression of structural damage, respectively. The parametric analysis and the moment tensor analysis of the AE data …
Elastoplastic analysis by the multidomain Symmetric Boundary Element Method
2009
Lower bound limit analysis by bem: Convex optimization problem and incremental approach
2013
Abstract The lower bound limit approach of the classical plasticity theory is rephrased using the Multidomain Symmetric Galerkin Boundary Element Method, under conditions of plane and initial strains, ideal plasticity and associated flow rule. The new formulation couples a multidomain procedure with nonlinear programming techniques and defines the self-equilibrium stress field by an equation involving all the substructures (bem-elements) of the discretized system. The analysis is performed in a canonical form as a convex optimization problem with quadratic constraints, in terms of discrete variables, and implemented using the Karnak.sGbem code coupled with the optimization toolbox by MatLab…
Multidomain SBEM analysis for two dimensionalelastoplastic-contact problems
2012
The Symmetric Boundary Element Method based on the Galerkin hypotheses has found application in the nonlinear analysis of plasticity and contact-detachment problems, but dealt with separately. In this paper we wants to treat these complex phenomena together. This method works in structures by introducing a subdivision into sub-structures, distinguished into macroelements, where elastic behaviour is assumed, and bem-elements, where it is possible for plastic strains to occur. In all the sub-structures, elasticity equations are written and regularity conditions in weighted (weak) form and/or in nodal (strong) form between boundaries have to be introduced, to attain the solving equation system.
Elastoplastic analysis for active macro-zones via multidomain symmetric Galerkin BEM
2010
In this paper a strategy to perform elastoplastic analysis by using the Symmetric Boundary Element Method (SBEM) for multidomain type problems is shown. This formulation uses a self-stresses equation to evaluate the trial stress in the predictor phase, and to provide the elastoplastic solution in the corrector one. Since the solution is obtained through a return mapping involving simultaneously all the plastically active bem-elements, the proposed strategy does not depend on the path of the plastic strain process and it is characterized by computational advantages due the considerable decrease of the plastic iterations number. This procedure has been developed inside Karnak.sGbem code [1] b…
A phase-field model for strain localization analysis in softening elastoplastic materials
2019
Abstract The present paper deals with the localization of strains in those structures consisting of materials exhibiting plastic softening response. It is assumed that strain localization develops in a finite thickness band separated from the remaining part of the structure by weak discontinuity surfaces. In view of the small thickness of the band with respect to the dimensions of the structure, the interphase concept is used for the mechanical modeling of the localization phenomenon. We propose a formulation for the quasi-static modeling of strain localization based on a phase-field approach. In this sense, the localization band is smeared over the volume of the structure and a smooth tran…