Search results for "electric dipole moment"

showing 10 items of 88 documents

A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI

2021

It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …

Nuclear and High Energy PhysicsNeutron electric dipole momentmedia_common.quotation_subjectmagnetic fieldWeak interaction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astronomy & Astrophysics01 natural sciences7. Clean energyAsymmetryrotationPhysics Particles & FieldsELECTRIC-DIPOLE MOMENTweak interaction0103 physical sciencesDark matterDARK-MATTERNeutron010306 general physicsnumerical calculationsmirrorNuclear mattermedia_commonoscillation: timePhysicsn: electric momentProperties of neutrons Ultracold neutrons Nuclear matter Mirror matter Dark matter Particle symmetriesScience & TechnologyProperties of neutronsParticle symmetries010308 nuclear & particles physicsparity: symmetryPhysicsNuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]lcsh:QC1-999Mirror matterMagnetic fieldMODELPhysics Nuclear[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical SciencesUltracold neutronsAtomic physicsUltracold neutronsMirror matterasymmetrylcsh:PhysicsPhysics Letters B
researchProduct

Constraining interactions mediated by axion-like particles with ultracold neutrons

2015

We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ~1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence o…

Nuclear and High Energy PhysicsNeutron magnetic momentNeutron electric dipole momentFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsPHYSICSHigh Energy Physics - Experiment (hep-ex)Complementary experimentsHigh Energy Physics - Phenomenology (hep-ph)AxionMOMENTS[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]SEARCH0103 physical sciencesAxion-like particleultracold neutronsNeutron010306 general physicsCoupling constantLarmor precessionPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsNeutron electric dipole moment[SPI.PLASMA]Engineering Sciences [physics]/Plasmaslcsh:QC1-999neutron electric dipole momentShort range spin-dependent interactionElectric dipole momentHigh Energy Physics - PhenomenologyCP violationaxion-like particleaxionUltracold neutronsshort range spin-dependent interactionFORCESUltracold neutronsCP violation; Short range spin-dependent interaction; Axion; Axion-like particle; Ultracold neutrons; Neutron electric dipole momentlcsh:Physics
researchProduct

A Revised Experimental Upper Limit on the Electric Dipole Moment of the Neutron

2015

We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_\mathrm{n} = -0.21 \pm 1.82 \times10^{-26}$ $e$cm, which may be inter…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesMagnitude (mathematics)01 natural sciencesResonance (particle physics)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Quantum mechanicsPaul-Scherrer InstituteCesium atom0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronLimit (mathematics)010306 general physicsPhysicsConservation lawmagnetic-momentMagnetic moment010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)QC0793Atomic-Mercury magnetometerElectric dipole momentresonanceQuantum electrodynamicsUltracold neutronsParticle Physics - Experiment
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment sea…

2018

International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based ma…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentAtomic Physics (physics.atom-ph)Magnetometeratomic spectroscopyFOS: Physical sciencesAtomic spectroscopyNeutronelectric dipole moment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslaw.inventionHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)symbols.namesakeneutronlaw0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsZeeman effect; Atomic spectroscopy; Mercury; Electric dipole moment; Neutron[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationNuclear ExperimentPhysicsZeeman effectElectric dipole moment010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Zeeman effectMercuryLaserComputational physicsMagnetic fieldElectric dipole momentAtomic spectroscopysymbols
researchProduct

W polarisation beyond helicity fractions in top quark decays

2010

30 páginas, 14 figuras, 1 tabla.-- arXiv:1005.5382v2

Nuclear and High Energy PhysicsTop quarkParticle physicsmedia_common.quotation_subjectDensityFOS: Physical sciences01 natural sciencesBottom quarkAsymmetryHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsSpin-½media_commonPhysics010308 nuclear & particles physicsFísicaRest frameTop quarkHelicityHigh Energy Physics - PhenomenologyElectric dipole momentPair production
researchProduct

Data Blinding for the nEDM Experiment at PSI

2020

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

Nuclear and High Energy Physicsdata analysis methodPhysics - Instrumentation and DetectorsOffset (computer science)BlindingNeutron electric dipole momentOther Fields of PhysicsFOS: Physical sciencesSeparate analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesHigh Energy Physics - Experimentphysics.data-anHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detPhysicsn: electric moment010308 nuclear & particles physicshep-exProbability and statisticsInstrumentation and Detectors (physics.ins-det)Data setSpecial Article - New Tools and TechniquesTrustworthinessPhysics - Data Analysis Statistics and ProbabilityAlgorithmData Analysis Statistics and Probability (physics.data-an)Particle Physics - Experiment[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]
researchProduct

EDM observables for τ production with polarized beams

2008

The Tau-lepton electric dipole moment (EDM) can be measured at Super B/Flavor factories operating with polarized electron beams at energies near and on top of the ¤ resonances. In particular, new CP-odd observables, independent from others already considered, will allow to put stringent bounds on the ? EDM.

Nuclear physicsPhysicsHistoryElectric dipole momentHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentObservablePhysics::Atomic PhysicsElectronPartícules (Física nuclear)Computer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of r…

1978

Abstract A comprehensive description of the muon storage ring and its operation is given, and the final results of the experiment are presented and discussed. The anomalous magnetic moments of positive and negative muons are found to be aμ+ = 1165911(11) × 10−9 and aμ− = 1165937(12) × 10−9 giving an average value for muons of aμ = 1165924(8.5) × 10−9. The electric dipole moments were also measured with the results Dμ+= (8.6 ± 4.5) × 10−9e · cm and Dμ− = (0.8 ± 4.3) × 10−19e · cm. Under the assumption of the CPT theorem these yield a weighted average of Dμ = (3.7 ± 3.4) × 10−19e · cm. Finally the time transformation of special relativity is shown to be valid to (0.8 ± 0.7) × 10−3 at γ ≅ 29.3…

Nuclear physicsPhysicsNuclear and High Energy PhysicsDipoleElectric dipole momentParticle physicsMuonMagnetic momentAnomalous magnetic dipole momentCPT symmetryTime dilationParticle Physics - ExperimentStorage ringNuclear Physics B
researchProduct

Spectroscopy of Rn, Ra and Th isotopes using multi-nucleon transfer reactions

1999

Abstract High-spin spectroscopy of Rn, Ra and Th isotopes has been performed. The nuclei have been populated using multi-nucleon transfer reactions involving a 232 Th target and a 136 Xe projectile. This type of reaction offers the only mechanism for populating high-spin states in many of these nuclei. Interleaving bands with opposite parities have been observed to high spin ( ∼28 h ) in 218,220,222 Rn, 222,224,226,228 Ra and 228,230,234 Th. A systematic study of the rotational alignment properties of octupole bands in radon, radium and thorium isotopes reveals information concerning the role of the octupole phonon and the onset of stable octupole deformation with increasing rotational freq…

Nuclear reactionPhysicsNuclear and High Energy PhysicsIsotopePhononNuclear TheoryNuclear physicsElectric dipole momentPhysics::Atomic PhysicsNuclear ExperimentNucleonSpin (physics)SpectroscopyIsotopes of thoriumNuclear Physics A
researchProduct