Search results for "electric field"

showing 5 items of 545 documents

Highly-parallelized simulation of a pixelated LArTPC on a GPU

2023

The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The alg…

multiplication and inductionpulse formationscintillationtutkimuslaitteethiukkasfysiikkaelectric fieldsnoble liquid detectorscharge transportdetector modelling and simulations IIsimulation methods and programsMonte Carlo -menetelmätilmaisimetelectron emissiondouble-phaseprosessointiionizationalgoritmittime projection chamberssimulointiTPC
researchProduct

Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments

2021

Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The c…

noiseNeutron electric dipole momentMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciencesNeutron Physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNoise (electronics)010305 fluids & plasmaslaw.inventionPhysics - Atomic PhysicslawElectric field0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicshigh-precision experimentsprecision measurementJohnson–Nyquist noiseAtomic and molecular structure and dynamics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Computational physicsDipoleNuclear Spin ResonanceAmplitudeElectromagnetic Field Calculations
researchProduct

Partial Discharges in HVDC Cables - The Effect of the Temperature Gradient During Load Transients

2021

The paper investigates the role of the space charge accumulation phenomena in the inception of Partial Discharges (PD) in a defect within the bulk of the dielectrics of a High Voltage Direct Current (HVDC) cable. It is widespread accepted that the number of PD occurring in an HVDC cable during its lifetime is largely less than that under AC voltage stress. This is essentially due to higher values of the voltage between the conductor and the screen needed to trigger PD under a steady DC voltage than the same value under AC stress. Nevertheless, due to the dependency of the electrical conductivity of the insulation on the electric field and temperature, PD in HVDC cables is strongly influence…

power cable insulationHVDCMaterials sciencepartial discharge (PD)Electric field simulationDirect currentfinite element analysisMechanicsSpace chargeStress (mechanics)Settore ING-IND/31 - ElettrotecnicaTemperature gradientElectrical resistivity and conductivityload transientsTransient (oscillation)Electrical and Electronic EngineeringCurrent (fluid)VoltageIEEE Transactions on Dielectrics and Electrical Insulation
researchProduct

Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

2010

The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called "magnetic bottles" and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microw…

spectroscopyPhotonmagnetic momentlcsh:Chemical technologyBiochemistryArticleAnalytical ChemistryElectromagnetic FieldsElectric fieldmagnetic bottlelcsh:TP1-1185Electrical and Electronic EngineeringMicrowavesSpectroscopyInstrumentationIonsOscillationChemistryLasersSpectrum Analysispenning trapPenning trapAtomic and Molecular Physics and OpticsIon trapRotational spectroscopyAtomic physicsMicrowaveSensors
researchProduct

Semi-discrete Galerkin approximation method applied to initial boundary value problems for Maxwell's equations in anisotropic, inhomogeneous media

1981

SynopsisIn this paper the semi-discrete Galerkin approximation of initial boundary value problems for Maxwell's equations is analysed. For the electric field a hyperbolic system of equations is first derived. The standard Galerkin method is applied to this system and a priori error estimates are established for the approximation.

symbols.namesakeMaxwell's equationsGeneral MathematicsElectric fieldMathematical analysissymbolsA priori and a posterioriBoundary value problemAnisotropyGalerkin methodHyperbolic systemsMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct