Search results for "electromagnetics"
showing 10 items of 42 documents
Wavelet-like bases for thin-wire integral equations in electromagnetics
2005
AbstractIn this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis trans…
No effects of mobile phone use on cortical auditory change-detection in children: an ERP study
2010
We investigated the effect of mobile phone use on the auditory sensory memory in children. Auditory event-related potentials (ERPs), P1, N2, mismatch negativity (MMN), and P3a, were recorded from 17 children, aged 11–12 years, in the recently developed multi-feature paradigm. This paradigm allows one to determine the neural change-detection profile consisting of several different types of acoustic changes. During the recording, an ordinary GSM (Global System for Mobile Communications) mobile phone emitting 902 MHz (pulsed at 217 Hz) electromagnetic field (EMF) was placed on the ear, over the left or right temporal area (SAR1g = 1.14 W/kg, SAR10g = 0.82 W/kg, peak value = 1.21 W/kg). The EMF…
A Meshless Approach for Electromagnetic Simulation of Metallic Carbon Nanotubes
2009
In this paper, a study on the electromagnetic behaviour of a single wall carbon nanotube model is described. The electrons available for conduction are treated as a thin cylindrical layer fluid and their motion is described by means of classical hydrodynamics equations in linearized form. These equations are solved in time domain using the Smoothed Particle Hydrodynamics method. The method suitably handled runs on GRID environment.
Changes in trunk posture and muscle responses in standing during pregnancy and postpartum
2018
Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194853 The aim of this study was to analyze the position of the lumbopelvic region and the muscle activation of erector spinae and biceps femoris muscles in a group of pregnant women in the third trimester. The hypothesis was that pregnancy-related biomechanical and morphological changes modify the position of the lumbopelvic region and the activation of extensor muscles. The position of the lumbar spine and pelvis in the sagittal plane, and the EMG activity of the erector spinae and biceps femoris muscles, were recorded during standing…
Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms
1999
SUMMARY A multiobjective multidisciplinary design optimization (MDO) of two-dimensional airfoil is presented. In this paper, an approximation for the Pareto set of optimal solutions is obtained by using a genetic algorithm (GA). The first objective function is the drag coefficient. As a constraint it is required that the lift coefficient is above a given value. The CFD analysis solver is based on the finite volume discretization of the inviscid Euler equations. The second objective function is equivalent to the integral of the transverse magnetic radar cross section (RCS) over a given sector. The computational electromagnetics (CEM) wave field analysis requires the solution of a two-dimensi…
Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method
2014
Numerical solution of partial differential equations governing time domain simulations in computational electromagnetics, is usually based on grid methods in space and on explicit schemes in time. A predefined grid in the problem domain and a stability step size restriction need. Recently, the authors have reformulated the meshless framework based on smoothed particle hydrodynamics, in order to be applied for time domain electromagnetic simulation. Despite the good spatial properties, the numerical explicit time integration introduces, also in a meshless context, a severe constraint. In this paper, at first, the stability condition is addressed in a general way by allowing the time step inc…
Smoothed Particle ElectroMagnetics: A mesh-free solver for transients
2006
AbstractIn this paper an advanced mesh-free particle method for electromagnetic transient analysis, is presented. The aim is to obtain efficient simulations by avoiding the use of a mesh such as in the most popular grid-based numerical methods. The basic idea is to obtain numerical solutions for partial differential equations describing the electromagnetic problem by using a set of particles arbitrarily placed in the problem domain. The mesh-free smoothed particle hydrodynamics method has been adopted to obtain numerical solution of time domain Maxwell's curl equations. An explicit finite difference scheme has been employed for time integration. Details about the numerical treatment of elec…
Theory overview of Heavy Ion collisions
2016
This presentation discusses some recently active topics in the theoretical interpretation of high energy heavy ion collisions at the LHC and at RHIC. We argue that the standard paradigm for understanding the spacetime evolution of the bulk of the matter produced in the collision is provided by viscous relativistic hydrodynamics, which can be used to systematically extract properties of the QCD medium from experimental results. The initial conditions of this hydrodynamical evolution are increasingly well understood in terms of gluon saturation, and can be quantified using Classical Yang-Mills fields and QCD effective kinetic theory. Hard and electromagnetic probes of the plasma provide addit…
Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices
2004
An extension of the finite difference time domain is applied to solve the Schrödinger equation. A systematic analysis of stability and convergence of this technique is carried out in this article. The numerical scheme used to solve the Schrödinger equation differs from the scheme found in electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee cell used by the electrical engineering community. A bound for the time step is derived to ensure stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second order, comparable to the analysis of electromagnetic devices with the Yee cell. a!Electronic mail: Antonio.Sorian…
Analysis of high-harmonic generation in terms of complex Floquet spectral analysis
2017
Recent developments on intense laser sources is opening a new field of optical sciences. An intense coherent light beam strongly interacting with the matter causes a coherent motion of a particle, forming a strongly dressed excited particle. A photon emission from this dressed excited particle is a strong nonlinear process causing high-harmonic generation (HHG), where the perturbation analysis is broken down. In this work, we study a coherent photon emission from a strongly dressed excited atom in terms of complex spectral analysis in the extended Floquet-Hilbert-space. We have obtained the eigenstates of the total Hamiltonian with use of Feshbach-Brilloiun-Wigner projection method. In this…